×

Dynamics of dissipative viscous cylindrical collapse with full causal approach in \(f(R)\) gravity. (English) Zbl 1402.83070

Summary: The idea of this article is to examine the effects on dynamics of dissipative gravitational collapse in nonstatic cylindrical symmetric geometry by using Misner-Sharp concept in framework of metric \(f(R)\) gravity theory. In this interest, we extended our study to the dissipative dark source case in both forms of heat flow and the free radiation streaming. Moreover, the role of different quantities such as heat flux, bulk, and shear viscosity in the dynamical equation is evaluated in thorough version. The dynamical equation is then coupled with full causal transportation equations in the context of Israel-Stewart formalism. The present scheme explains the physical consequences of the gravitational collapse and that is given in the decreasing form of inertial mass density which depends on thermodynamics viscous/heat coupling factors in background of \(f(R)\) theory of gravity. It is very interesting to tell us that the motives of this theory are reproduced for \(f(R) = R\) into general theory of relativity that has been done earlier.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
85A15 Galactic and stellar structure

References:

[1] Oppenheimer, J. R.; Snyder, H., On continued gravitational contraction, Physical Review A: Atomic, Molecular and Optical Physics, 56, 5, 455-459, (1939) · Zbl 0022.28104 · doi:10.1103/PhysRev.56.455
[2] Misner, C. W.; Sharp, D. H., Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Physical Review A: Atomic, Molecular and Optical Physics, 136, 2, B571-B576, (1964) · Zbl 0129.41102 · doi:10.1103/PhysRev.136.B571
[3] Vaidya, P. C., The gravitational field of a radiating star, Proceedings of the Indian Academy of Science, A33, 264, (1951) · Zbl 0044.42202
[4] Capozziello, S., Curvature quintessence, International Journal of Modern Physics D, 11, 483-492, (2002) · Zbl 1062.83565
[5] Sharif, M.; Yousaf, Z., Stability of a Class of Non-Static Axial Self-Gravitating Systems in f(R) Gravity, Astrophysics and Space Science, 352, 943, (2014)
[6] Mak, M. K.; Harko, T.; Soc, R., Anisotropic Stars in General Relativity, Proceedings of the Royal Society, A459, 393, (2003) · Zbl 1029.83023
[7] Herrera, L.; Santos, N. O., Jeans mass for anisotropic matter, The Astrophysical Journal, 438, 308, (1995)
[8] Weber, F., Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, BS1, (1999), Institute of Physics Publishing, Dirac House, Temple Back · Zbl 0984.85003
[9] Chakraborty, S.; Chakraborty, S.; Debnath, U., Role of Pressure in Quasi-Spherical Gravitational Collapse, International Journal of Modern Physics, D14, 1707, (2005) · Zbl 1098.83019
[10] Garattini, R., Naked Singularity in a Modified Gravity Theory, Journal of Physics: Conference Series, (2009)
[11] Sharif, M.; Zaeem Ul Haq Bhatti, M., Structure scalars for charged cylindrically symmetric relativistic fluids, General Relativity and Gravitation, 44, 11, 2811-2823, (2012) · Zbl 1253.83012 · doi:10.1007/s10714-012-1428-2
[12] Sharif, M.; Bhatti, M. Z., Structure scalars in charged plane symmetry, Modern Physics Letters A, 27, 27, 1250141, (2012) · Zbl 1260.83049 · doi:10.1142/S0217732312501416
[13] Sharif, M.; Yousaf, Z., Evolution of expansion-free self-gravitating fluids and plane symmetry, International Journal of Modern Physics, D21, (2012) · Zbl 1263.83056
[14] Sharif, M.; Yousaf, Z., Expansion-free Cylindrically Symmetric Models, Canadian Journal of Physics, 90, 865, (2012)
[15] Sharif, M.; Kausar, H. R., Effects of f(R) model on the dynamical instability of expansionfree gravitational collapse, Journal of Cosmology and Astroparticle Physics, 7, 022, (2011)
[16] Sharif, M.; Azam, M., Effects of Electromagnetic Field on the Dynamical Instability of Cylindrical Collapse, Journal of Cosmology and Astroparticle Physics, 02, 043, (2012) · Zbl 1241.83057
[17] Sharif, M.; Fatima, S., Charged cylindrical collapse of anisotropic fluid, General Relativity and Gravitation, 43, 1, 127-142, (2011) · Zbl 1208.83082 · doi:10.1007/s10714-010-1076-3
[18] Sharif, M.; Abbas, G., Dynamics of Non-adiabatic Charged Cylindrical Gravitational Collapse, Astrophysics and Space Science, 335, 515, (2011) · Zbl 1230.83069
[19] Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S. D.; Zerbini, S., One-loop f(R) gravity in de Sitter universe, Journal of Cosmology and Astroparticle Physics, 02, 010, (2005)
[20] Capozziello, S.; de Laurentis, M., Extended Theories of Gravity, Physics Reports, 509, 4-5, 167-321, (2011) · doi:10.1016/j.physrep.2011.09.003
[21] Copeland, E. J.; Sami, M.; Tsujikawa, S., Dynamics of dark energy, International Journal of Modern Physics D, 15, 11, 1753-1936, (2006) · Zbl 1203.83061 · doi:10.1142/s021827180600942x
[22] Amendola, L.; Gannouji, R.; Polarski, D.; Tsujikawa, S., Conditions for the cosmological viability of f(R) dark energy models, Physical Review D: Particles, Fields, Gravitation and Cosmology, 75, 8, (2007) · doi:10.1103/physrevd.75.083504
[23] Chandrasekhar, S., The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity, The Astrophysical Journal, 140, 417-433, (1964) · Zbl 0151.47102 · doi:10.1086/147938
[24] Herrera, L.; le Denmat, G.; Santos, N. O., Dynamical instability for nonadiabatic spherical collapse, Royal Astronomical Society. Monthly Notices, 237, 2, 257-268, (1989) · Zbl 0668.76158 · doi:10.1093/mnras/237.1.257
[25] Abbas, G.; Nazeer, S.; Meraj, M. A., Cylindrically symmetric models of anisotropic compact stars, Astrophysics and Space Science, 354, 449, (2014)
[26] Mak, M. K.; Harko, T., Quark stars admitting a one-parameter group of conformal motions, International Journal of Modern Physics, D13, 149, (2004) · Zbl 1079.83513
[27] Rahaman, F.; Sharma, R.; Ray, S.; Maulick, R.; Karar, I., Strange stars in Krori-Barua space-time, The European Physical Journal C, 72, 2071, (2012)
[28] Herrera, L., Cracking of self-gravitating compact objects, Physics Letters A, 165, 3, 206-210, (1992) · doi:10.1016/0375-9601(92)90036-L
[29] Herrera, L.; Prisco, D.; Ibanez, A., On the Role of Electric Charge and Cosmological Constant in Structure Scalars, Physical Review A, D84, 107501, (2011)
[30] Herrera, L.; Ospino, J.; Prisco, A. D., All static spherically symmetric anisotropic solutions of Einstein’s equations, Physical Review, D77, 027502, (2008)
[31] Herrera, L.; Santos, N. O.; Wang, A., Shearing Expansion-free Spherical Anisotropic Fluid Evolution, Physical Review, D78, (2008)
[32] Herrera, L.; Santos, N. O., Dynamics of dissipative gravitational collapse, Physical Review, D70, 084004, (2004)
[33] Herrera, L.; Le Denmat, G.; Santos, N. O., Dynamical instability and the expansion-free condition, General Relativity and Gravitation, 44, 5, 1143-1162, (2012) · Zbl 1241.83023 · doi:10.1007/s10714-012-1331-x
[34] Prisco, A. D.; Herrera, L.; Ospino, J.; Santos, N. O.; Vina-Cervantes, V. M., Expansion-Free Cavity Evolution: Some exact Analytical Models, International Journal of Modern Physics, D20, D20, (2011) · Zbl 1266.83055
[35] Herrera, L.; Prisco, A. D.; Fuenmayor, E.; Troconis, O., Dynamics of viscous dissipative gravitational collapse: A full causal approach, International Journal of Modern Physics, D18, 129, (2009) · Zbl 1163.83356
[36] Di Prisco, A.; Herrera, L.; Le Denmat, G.; MacCallum, M. A. H.; Santos, N. O., Nonadiabatic charged spherical gravitational collapse, Physical Review D: Particles, Fields, Gravitation and Cosmology, 76, (2007) · doi:10.1103/PhysRevD.76.064017
[37] Herrera, L.; Maccallum, M. A. H.; Santos, N. O., On the Matching Conditions for the Collapsing Cylinder, Classical and Quantum Gravity, 24, 1033, (2007)
[38] Di Prisco, A.; Herrera, L.; MacCallum, M. A.; Santos, N. O., Shearfree cylindrical gravitational collapse, Physical Review D: Particles, Fields, Gravitation and Cosmology, 80, 6, (2009) · doi:10.1103/PhysRevD.80.064031
[39] Nolan, B. C., Naked singularities in cylindrical collapse of counterrotating dust shells, Physical Review, D65, 104006, (2002)
[40] Hayward, S. A., Gravitational waves, black holes and cosmic strings in cylindrical symmetry, Classical and Quantum Gravity, 17, 1749, (2000) · Zbl 0983.83044 · doi:10.1088/0264-9381/17/8/302
[41] Müller, I., Zum Paradoxon der Wärmeleitungstheorie, Zeitschrift für Physik, 198, 4, 329-344, (1967) · Zbl 0143.23602 · doi:10.1007/BF01326412
[42] Israel, W., Nonstationary irreversible thermodynamics: a causal relativistic theory, Annals of Physics, 100, 1-2, 310-331, (1976) · doi:10.1016/0003-4916(76)90064-6
[43] Israel, W.; Stewart, J. M., Transient relativistic thermodynamics and kinetic theory, Annals of Physics, 118, 2, 341-372, (1979) · doi:10.1016/0003-4916(79)90130-1
[44] Maartens, R., Causal Thermodynamics in Relativity, Astrophysics · Zbl 0635.53014
[45] Chan, R., Radiating gravitational collapse with shear viscosity, Monthly Notices of the Royal Astronomical Society, 316, 588, (2000)
[46] Thorne, K. S., Energy of infinitely long, cylindrically symmetric systems in general relativity, Physical Review B: Condensed Matter and Materials Physics, 138, B251, (1965) · Zbl 0125.45201 · doi:10.1103/PhysRev.138.B251
[47] Shah, S. M.; Abbas, G., Dynamics of charged viscous dissipative cylindrical collapse with full causal approach, European Physical Journal, A53, 53, (2017)
[48] Chiba, T., Cylindrical dust collapse in general relativity: toward higher dimensional collapse, Progress of Theoretical and Experimental Physics, 95, 2, 321-338, (1996) · doi:10.1143/PTP.95.321
[49] Chao-Guang, H., Charged static cylindrical black hole, Acta Physica Sinica, 4, 8, 617-630, (1995) · doi:10.1088/1004-423X/4/8/008
[50] Darmois, G., Memorial des Sciences Mathematiques, 25, (1927), Paris, France: Gautheir-Viuars, Paris, France · JFM 53.0816.03
[51] Guha, S.; Banerji, R., Dissipative cylindrical collapse of charged anisotropic fluid, International Journal of Theoretical Physics, 53, 7, 2332-2348, (2014) · Zbl 1298.83081 · doi:10.1007/s10773-014-2033-9
[52] Senovilla, J. M. M., Junction conditions for F(R)-gravity and their consequences, Physical Review, 88, 064015, (2013)
[53] Clifton, T.; Dunsby, P. K. S.; Goswami, R.; Nzioki, A. M., On the absence of the usual weak-field limit, and the impossibility of embedding some known solutions for isolated masses in cosmologies with f(R) dark energy, Physical Review, D87, 063517, (2013)
[54] Deruelle, N.; Sasaki, M.; Sendouda, Y., Junction Conditions in f(R) Theories of Gravity, Progress of Theoretical and Experimental Physics, 119, 237, (2008) · Zbl 1152.83019
[55] Ganguly, A.; Gannouji, R.; Goswami, R.; Ray, S., Neutron stars in the Starobinsky model, Physical Review D: Particles, Fields, Gravitation and Cosmology, 89, 6, (2014) · doi:10.1103/PhysRevD.89.064019
[56] Goswami, R.; Nzioki, A. M.; Maharaj, S. D.; Ghosh, S. G., Collapsing spherical stars in f(R) gravity, Physical Review D, 90, 8, (2014) · doi:10.1103/PhysRevD.90.084011
[57] Misner, C. W.; Sharp, D., Relativistic equations for spherical gravitational collapse with escaping neutrinos, Physical Review, B137, 1360, (1965) · Zbl 0127.18405
[58] Weyl, H., On the Theory of Gravitation, Annalen der Physik (Leipzig), 54, 117, (1917) · JFM 46.1303.01
[59] Levi-Civita, T., d2 einsteiniani in campi newtoniani. IX. L’analogo del potenziale logaritmico, Atti Della Reale Accademia Dei Lincei. Rendiconti, 28, 101, (1919) · JFM 47.0798.04
[60] Cattaneo, C., Sulla conduzione del calore, Atti del Seminario Matematico e Fisico dell’ Universita di Modena e Reggio Emilia, 3, 3, (1948)
[61] Anile, A.; Pavon, D.; Romano, V., The Case for Hyperbolic Theories of Dissipation in Relativistic Fluids
[62] Herrera, L.; Pavon, D., Hyperbolic theories of dissipation: Why and when do we need them?, Physica, A307, 121, (2002) · Zbl 0994.82070
[63] Shah, S. M.; Abbas, G., Dynamics of charged bulk viscous collapsing cylindrical source with heat flux, Journal of Physics, C77, 251, (2017)
[64] Herrera, L.; Di Prisco, A.; Barreto, W., Thermoinertial bouncing of a relativistic collapsing sphere: A numerical model, Physical Review D: Particles, Fields, Gravitation and Cosmology, 73, 2, (2006) · doi:10.1103/PhysRevD.73.024008
[65] Abbas, G.; Nazar, H., Dissipative and Viscous Gravitational Collapse in f(R) Gravity With Full Causal Approach (submitted for publication 2018) · Zbl 1402.83070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.