×

On the computation of fusion over the affine Temperley-Lieb algebra. (English) Zbl 1402.81214

Summary: Fusion product originates in the algebraization of the operator product expansion in conformal field theory. N. Read and H. Saleur [ibid. 777, No. 3, 316–351 (2007; Zbl 1200.81136)] introduced an analogue of fusion for modules over associative algebras, for example those appearing in the description of 2d lattice models. The article extends their definition for modules over the affine Temperley-Lieb algebra \(\mathsf{TL}_n^{\mathsf{a}}\).
Since the regular Temperley-Lieb algebra \(\mathsf{TL}_n\) is a subalgebra of the affine \(\mathsf{TL}_n^{\mathsf{a}}\), there is a natural pair of adjoint induction-restriction functors \((\uparrow^a_r, \downarrow_r^a)\). The existence of an algebra morphism \(\phi : \mathsf{TL}_n^{\mathsf{a}} \rightarrow \mathsf{TL}_n\) provides a second pair of adjoint functors \((\Uparrow_a^r, \Downarrow_a^r)\). Two fusion products between \(\mathsf{TL}^{\mathsf{a}}\)-modules are proposed and studied. They are expressed in terms of these four functors. The action of these functors is computed on the standard, cell and irreducible \(\mathsf{TL}_n^{\mathsf{a}}\)-modules. As a byproduct, the Peirce decomposition of \(\mathsf{TL}_n^{\mathsf{a}}(q + q^{- 1})\), when \(q\) is not a root of unity, is given as direct sum of the induction \(\uparrow_r^a \mathsf{S}_{n, k}\) of standard \(\mathsf{TL}_n\)-modules to \(\mathsf{TL}_n^{\mathsf{a}}\)-modules. Examples of fusion products of various pairs of affine modules are given.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
17B65 Infinite-dimensional Lie (super)algebras
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81T27 Continuum limits in quantum field theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
16D10 General module theory in associative algebras

Citations:

Zbl 1200.81136

References:

[1] Read, N.; Saleur, H., Associative-algebraic approach to logarithmic conformal field theories, Nucl. Phys. B, 777, 316-351, (2007) · Zbl 1200.81136
[2] Read, N.; Saleur, H., Enlarged symmetry algebras of spin chains, loop models, and S-matrices, Nucl. Phys. B, 777, 263-315, (2007) · Zbl 1200.81083
[3] Hamermesh, M., Group Theory and Its Application to Physical Problems, (1962), Addison-Wesley: Addison-Wesley Reading · Zbl 0151.34101
[4] Gainutdinov, A.; Vasseur, R., Lattice fusion rules and logarithmic operator product expansions, Nucl. Phys. B, 868, 223-270, (2013) · Zbl 1262.81160
[5] Belletête, J., The fusion rules for the Temperley-Lieb algebra and its dilute generalization, J. Phys. A, 48, (2015) · Zbl 1333.81191
[6] Gainutdinov, A. M.; Saleur, H., Fusion and braiding in finite and affine Temperley-Lieb categories
[7] Chow, W. L., On the algebraical braid group, Ann. Math., 49, 654-658, (1948) · Zbl 0033.01002
[8] Graham, J. J.; Lehrer, G. I., The representation theory of affine Temperley-Lieb algebras, Ens. Mat., 44, 173-218, (1998) · Zbl 0964.20002
[9] Graham, J. J.; Lehrer, G. I., Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Sci. Éc. Norm. Supér. (4), 36, 479-524, (2003) · Zbl 1062.20003
[10] Turaev, V. G., Quantum Invariants of Knots and 3-Manifolds, Studies in Mathematics, vol. 18, (2010), De Gruyter: De Gruyter Berlin · Zbl 1213.57002
[11] Goodman, F.; Wenzl, H., The Temperley-Lieb algebra at roots of unity, Pac. J. Math., 161, 307-334, (1993) · Zbl 0823.16004
[12] Martin, P., Potts Models and Related Problems in Statistical Mechanics, Advances in Statistical Mechanics, vol. 5, (1991), World Scientific: World Scientific Singapore · Zbl 0734.17012
[13] Westbury, B., The representation theory of the Temperley-Lieb algebras, Math. Z., 219, 539-565, (1995) · Zbl 0840.16008
[14] Ridout, D.; Saint-Aubin, Y., Standard modules, induction and the Temperley-Lieb algebra, Adv. Theor. Math. Phys., 18, 957-1041, (2014) · Zbl 1308.82015
[15] Belletête, J.; Ridout, D.; Saint-Aubin, Y., Restriction and induction of indecomposable modules over the Temperley-Lieb algebras · Zbl 1387.82051
[16] Belletête, J.; Saint-Aubin, Y., Fusion and monodromy in the Temperley-Lieb category
[17] Green, R. M., On representations of affine Temperley-Lieb algebras, (Reiten, I.; Smalø, S. O.; Solberg, Ø., Conference Proceedings, Canadian Mathematical Society, vol. 24, (1998), American Mathematical Society) · Zbl 0940.20049
[18] Halverson, T.; Mazzocco, M.; Ram, A., Commuting families in Hecke and Temperley-Lieb algebras, Nagoya Math. J., 195, 125-152, (2009) · Zbl 1217.20002
[19] Morin-Duchesne, A.; Rasmussen, J.; Ridout, D., Boundary algebras and Kac modules for logarithmic minimal models, Nucl. Phys. B, 899, 677-769, (2015) · Zbl 1331.81262
[20] Martin, P.; Saleur, H., The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys., 30, 189-206, (1994) · Zbl 0799.16005
[21] Assem, I.; Simson, D.; Skowroński, A., Elements of the Representation Theory of Associative Algebras, Lond. Math. Soc. Stud. Texts, vol. 65, (2006), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1092.16001
[22] Assem, I., Algèbres et modules, (1997), Masson: Masson Paris · Zbl 0896.16001
[23] De La Rosa Gomez, A.; MacKay, N.; Regelskis, V., How to fold a spin chain: integrable boundaries of the Heisenberg XXX and Inozemtsev hyperbolic models, Phys. Lett. A, 381, 1340-1348, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.