×

Left counital Hopf algebras on free Nijenhuis algebras. (English) Zbl 1400.16023

Summary: Factorization in algebra is an important problem. In this paper, we first obtain a unique factorization in free Nijenhuis algebras. By using of this unique factorization, we then define a coproduct and a left counital bialgebraic structure on a free Nijenhuis algebra. Finally, we prove that this left counital bialgebra is connected and hence obtain a left counital Hopf algebra on a free Nijenhuis algebra.

MSC:

16T10 Bialgebras
16U30 Divisibility, noncommutative UFDs
08B20 Free algebras
16T05 Hopf algebras and their applications
16T30 Connections of Hopf algebras with combinatorics

References:

[1] Abe, E., Hopf Algebras, (1980), Cambridge University Press, Cambridge-New York · Zbl 0476.16008
[2] Andrews, G. E.; Guo, L.; Keigher, W.; Ono, K., Baxter algebras and Hopf algebras, Trans. Am. Math. Soc., 355, 4639-4656, (2003) · Zbl 1056.16025
[3] Baxter, G., An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 10, 731-742, (1960) · Zbl 0095.12705
[4] Belavin, A. A.; Drinfeld, V. G., Triangle Equations and Simple Lie-Algebras, Classic Reviews in Mathematics and Mathematical Physics, 1, (1998), Harwood Academic Publishers, Amsterdam · Zbl 0921.58073
[5] Cariñena, J.; Grabowski, J.; Marmo, G., Quantum bi-Hamiltonian systems, Int. J. Modern Phys. A, 15, 4797-4810, (2000) · Zbl 1002.81026
[6] Connes, A.; Kreimer, D., Hopf algebras, renormalization and non-commutative geometry, Commun. Math. Phys., 199, 203-242, (1998) · Zbl 0932.16038
[7] Ebraihimi-Fard, K., On the associative Nijenhuis relation, Electrical J. Combin., 11, 1, R38, (2004) · Zbl 1074.17001
[8] Frölicher, A.; Nijenhuis, A., Theory of vector valued differential forms. part I, Indag. Math., 18, 338-360, (1956) · Zbl 0079.37502
[9] Gao, X.; Guo, L.; Sit, W.; Zheng, S., Rota-Baxter type operators, rewriting systems and Gröbner-Shirshov bases, J. Symb. Comput.
[10] Golubchik, I. Z.; Sokolov, V. V., Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys., 7, 184-197, (2000) · Zbl 1119.37318
[11] Golubchik, I. Z.; Sokolov, V. V., One more type of classical Yang-Baxter equation, Funct. Anal. Appl., 34, 296-298, (2000) · Zbl 1156.17306
[12] Guo, L., Operated semigroups, Motzkin paths and rooted trees, J. Algebraic Combin., 29, 35-62, (2009) · Zbl 1227.05271
[13] Guo, L., An Introduction to Rota-Baxter Algebra, (2012) · Zbl 1271.16001
[14] Guo, L.; Keigher, W., Baxter algebras and shuffle products, Adv. Math., 150, 117-149, (2000) · Zbl 0947.16013
[15] Kosmann-Schwarzbach, Y.; Magri, F., Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, 53, 35-81, (1990) · Zbl 0707.58048
[16] Lei, P.; Guo, L., Nijenhuis algebras, NS algebras and N-dendriform algebras, Frontiers Math. China, 7, 5, 827-846, (2012) · Zbl 1262.16040
[17] Loday, J. L.; Ronco, M. O., Trialgebras and families of polytopes, in “homotopy theory: relations with algebraic geometry, group cohomology, and algebraic k-theory”, Contemp. Math., 346, 369-398, (2004) · Zbl 1065.18007
[18] Nijenhuis, A., X_{n−1}-forming sets of eigenvectors, Indag. Math., 13, 200-212, (1951) · Zbl 0042.16001
[19] Sweedler, M., Hopf Algebras, (1969), Benjamin, New York · Zbl 0194.32901
[20] Uchino, K., Twisting on associative algebras and Rota-Baxter type operators, J. Noncommut. Geom., 4, 349-379, (2010) · Zbl 1248.16027
[21] Zhang, T.; Gao, X.; Guo, L., Hopf algebras of rooted forests, cocyles and free Rota-Baxter algebras, J. Math. Phys., 57, 101701, (2016) · Zbl 1351.81076
[22] Zheng, S.; Guo, L.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.