×

Fractional Brownian motion with Hurst index \({H = 0}\) and the Gaussian unitary ensemble. (English) Zbl 1393.60037

Summary: The goal of this paper is to establish a relation between characteristic polynomials of \(N\times N\) GUE random matrices \(\mathcal{H}\) as \(N\rightarrow\infty\), and Gaussian processes with logarithmic correlations. We introduce a regularized version of fractional Brownian motion with zero Hurst index, which is a Gaussian process with stationary increments and logarithmic increment structure. Then we prove that this process appears as a limit of \(D_{N}(z)=-\log|\det(\mathcal{H}-zI)|\) on mesoscopic scales as \(N\rightarrow\infty\). By employing a Fourier integral representation, we use this to prove a continuous analogue of a result by P. Diaconis and M. Shahshahani [J. Appl. Probab. 31A, 49–62 (1994; Zbl 0807.15015)]. On the macroscopic scale, \(D_{N}(x)\) gives rise to yet another type of Gaussian process with logarithmic correlations. We give an explicit construction of the latter in terms of a Chebyshev-Fourier random series.

MSC:

60G22 Fractional processes, including fractional Brownian motion
60B20 Random matrices (probabilistic aspects)
60F17 Functional limit theorems; invariance principles
60F05 Central limit and other weak theorems
60G15 Gaussian processes
60G25 Prediction theory (aspects of stochastic processes)

Citations:

Zbl 0807.15015

Software:

DLMF

References:

[1] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118 . Cambridge Univ. Press, Cambridge. · Zbl 1184.15023
[2] Astala, K., Jones, P., Kupiainen, A. and Saksman, E. (2011). Random conformal weldings. Acta Math. 207 203-254. · Zbl 1253.30032 · doi:10.1007/s11511-012-0069-3
[3] Bacry, E. and Muzy, J. F. (2003). Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 449-475. · Zbl 1032.60046 · doi:10.1007/s00220-003-0827-3
[4] Barral, J. and Mandelbrot, B. B. (2004). Non-degeneracy, moments, dimension, and multifractal analysis for random multiplicative measures (Random multiplicative multifractal measures. II). In Fractal Geometry and Applications : A Jubilee of Benoît Mandelbrot , Part 2. Proc. Sympos. Pure Math. 72 17-52. Amer. Math. Soc., Providence, RI. · Zbl 1117.28007 · doi:10.1090/pspum/072.2/2112120
[5] Bleher, P. M. (2011). Lectures on random matrix models: The Riemann-Hilbert approach. In Random Matrices , Random Processes and Integrable Systems (J. Harnad, ed.). CRM Ser. Math. Phys. 251-349. Springer, New York. · Zbl 1252.15040 · doi:10.1007/978-1-4419-9514-8_4
[6] Bleher, P. M. and Fokin, V. V. (2006). Exact solution of the six-vertex model with domain wall boundary conditions. Disordered phase. Comm. Math. Phys. 268 223-284. · Zbl 1190.82014 · doi:10.1007/s00220-006-0097-y
[7] Borodin, A. and Gorin, V. (2013). General beta Jacobi corners process and the Gaussian Free Field. Available at . arXiv:1305.3627 · Zbl 1325.60076 · doi:10.1002/cpa.21546
[8] Bourgade, P., Erdös, L., Yau, H.-T. and Yin, J. (2014). Fixed energy universality for generalized Wigner matrices. Available at . arXiv:1407.5606
[9] Boutet de Monvel, A. and Khorunzhy, A. (1999). Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices. Random Oper. Stoch. Equ. 7 1-22. · Zbl 0936.15021 · doi:10.1515/rose.1999.7.1.1
[10] Boutet de Monvel, A. and Khorunzhy, A. (1999). Asymptotic distribution of smoothed eigenvalue density. II. Wigner random matrices. Random Oper. Stoch. Equ. 7 149-168. · Zbl 0952.60064 · doi:10.1515/rose.1999.7.2.149
[11] Breuer, J. and Duits, M. (2016). Universality of mesoscopic fluctuations for orthogonal polynomial ensembles. Comm. Math. Phys. 342 491-531. · Zbl 1360.42014 · doi:10.1007/s00220-015-2514-6
[12] Carpentier, D. and Le Doussal, P. (2001). Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville ane sinh-Gordon models. Phys. Rev. E 63 026110.
[13] Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., Venakides, S. and Zhou, X. (1999). Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52 1491-1552. · Zbl 1026.42024 · doi:10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.0.CO;2-#
[14] Deift, P. A. (1999). Orthogonal Polynomials and Random Matrices : A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics 3 . New York Univ., Courant Institute of Mathematical Sciences, New York. · Zbl 0997.47033
[15] Diaconis, P. and Shahshahani, M. (1994). On the eigenvalues of random matrices. J. Appl. Probab. 31A 49-62. · Zbl 0807.15015 · doi:10.2307/3214948
[16] Doukhan, P, Oppenheim, G. and Taqqu, M. S., eds. (2003). Theory and Applications of Long-Range Dependence . Birkhäuser, Boston, MA. · Zbl 1005.00017
[17] Duits, M. and Johansson, K. (2013). On mesoscopic equilibrium for linear statistics in Dyson’s Brownian motion. Available at . arXiv:1312.4295
[18] Ercolani, N. M. and McLaughlin, K. D. T.-R. (2003). Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not. 14 755-820. · Zbl 1140.82307 · doi:10.1155/S1073792803211089
[19] Erdős, L. and Knowles, A. (2015). The Altshuler-Shklovskii formulas for random band matrices I: The unimodular case. Comm. Math. Phys. 333 1365-1416. · Zbl 1320.15032 · doi:10.1007/s00220-014-2119-5
[20] Erdős, L. and Knowles, A. (2015). The Altshuler-Shklovskii formulas for random band matrices II: The general case. Ann. Henri Poincaré 16 709-799. · Zbl 1330.82027 · doi:10.1007/s00023-014-0333-5
[21] Faleiro, E., Gómez, J. M. G., Molina, R. A., Muñoz, L., Relaño, A. and Relamosa, J. (2004). Theoretical derivation of \(1/f\) noise in quantum chaos. Phys. Rev. Lett. 93 244101.
[22] Fokas, A. S., Its, A. R. and Kitaev, A. V. (1992). The isomonodromy approach to matrix models in \(2\)D quantum gravity. Comm. Math. Phys. 147 395-430. · Zbl 0760.35051 · doi:10.1007/BF02096594
[23] Fyodorov, Y. V. and Bouchaud, J.-P. (2008). Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A 41 372001, 12. · Zbl 1214.82016 · doi:10.1088/1751-8113/41/37/372001
[24] Fyodorov, Y. V., Hiary, G. H. and Keating, J. P. (2012). Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta-function. Phys. Rev. Lett. 108 170601.
[25] Fyodorov, Y. V. and Keating, J. P. (2014). Freezing transitions and extreme values: Random matrix theory, and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 20120503, 32. · Zbl 1330.82028 · doi:10.1098/rsta.2012.0503
[26] Fyodorov, Y. V., Le Doussal, P. and Rosso, A. (2012). Counting function fluctuations and extreme value threshold in multifractal patterns: The case study of an ideal \(1/f\) noise. J. Stat. Phys. 149 898-920. · Zbl 1260.82016 · doi:10.1007/s10955-012-0623-6
[27] Garoufalidis, S. and Popescu, I. (2013). Analyticity of the planar limit of a matrix model. Ann. Henri Poincaré 14 499-565. · Zbl 1271.81168 · doi:10.1007/s00023-012-0191-y
[28] Grinblat, L. Š. (1976). A limit theorem for measurable random processes and its applications. Proc. Amer. Math. Soc. 61 371-376. · Zbl 0379.60009 · doi:10.1090/S0002-9939-1976-0423450-2
[29] Gustavsson, J. (2005). Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. Henri Poincaré Probab. Stat. 41 151-178. · Zbl 1073.60020 · doi:10.1016/j.anihpb.2004.04.002
[30] Hughes, C. P., Keating, J. P. and O’Connell, N. (2001). On the characteristic polynomial of a random unitary matrix. Comm. Math. Phys. 220 429-451. · Zbl 0987.60039 · doi:10.1007/s002200100453
[31] Johansson, K. (1998). On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91 151-204. · Zbl 1039.82504 · doi:10.1215/S0012-7094-98-09108-6
[32] Kahane, J.-P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 105-150. · Zbl 0596.60041
[33] Keating, J. P. and Snaith, N. C. (2000). Random matrix theory and \(\zeta(1/2+it)\). Comm. Math. Phys. 214 57-89. · Zbl 1051.11048 · doi:10.1007/s002200000261
[34] Krasikov, I. (2011). Some asymptotics for the Bessel functions with an explicit error term. Available at . arXiv:1107.2007
[35] Krasovsky, I. V. (2007). Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant. Duke Math. J. 139 581-619. · Zbl 1173.15012 · doi:10.1215/S0012-7094-07-13936-X
[36] Kuijlaars, A. B. J., McLaughlin, K. T.-R., Van Assche, W. and Vanlessen, M. (2004). The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on \([-1,1]\). Adv. Math. 188 337-398. · Zbl 1082.42017 · doi:10.1016/j.aim.2003.08.015
[37] Kuijlaars, A. B. J. and Vanlessen, M. (2003). Universality for eigenvalue correlations at the origin of the spectrum. Comm. Math. Phys. 243 163-191. · Zbl 1041.82007 · doi:10.1007/s00220-003-0960-z
[38] Lytova, A. and Pastur, L. (2009). Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37 1778-1840. · Zbl 1180.15029 · doi:10.1214/09-AOP452
[39] Male, C., Le Caër, G. and Delannay, R. (2007). \(1/f^{\alpha}\) noise in the fluctuations of the spectra of tridiagonal random matrices from the \(\beta\)-Hermite ensemble. Phys. Rev. E 76 042101.
[40] Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 422-437. · Zbl 0179.47801 · doi:10.1137/1010093
[41] Mehta, M. L. (2004). Random Matrices , 3rd ed. Pure and Applied Mathematics ( Amsterdam ) 142 . Elsevier/Academic Press, Amsterdam. · Zbl 1107.15019
[42] Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W., eds. (2010). NIST Handbook of Mathematical Functions . U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC. · Zbl 1198.00002
[43] Pastur, L. and Shcherbina, M. (2011). Eigenvalue Distribution of Large Random Matrices. Mathematical Surveys and Monographs 171 . Amer. Math. Soc., Providence, RI. · Zbl 1244.15002
[44] Rhodes, R. and Vargas, V. (2014). Gaussian multiplicative chaos and applications: A review. Probab. Surv. 11 315-392. · Zbl 1316.60073 · doi:10.1214/13-PS218
[45] Rider, B. and Virág, B. (2007). The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN 2 Art. ID rnm006, 33. · Zbl 1130.60030 · doi:10.1093/imrn/rnm006
[46] Samorodnitsky, G. (2006). Long range dependence. Found. Trends Stoch. Syst. 1 163-257. · Zbl 1242.60033 · doi:10.1561/0900000004
[47] Schmitt, F. G. (2003). A causal multifractal stochastic equation and its statistical properties. Eur. Phys. J. B 34 85-98.
[48] Sheffield, S. (2007). Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 521-541. · Zbl 1132.60072 · doi:10.1007/s00440-006-0050-1
[49] Soshnikov, A. (2000). The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab. 28 1353-1370. · Zbl 1021.60018 · doi:10.1214/aop/1019160338
[50] Sosoe, P. and Wong, P. (2013). Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices. Adv. Math. 249 37-87. · Zbl 1292.60008 · doi:10.1016/j.aim.2013.09.004
[51] Szegö, G. (1939). Orthogonal Polynomials. American Mathematical Society Colloquium Publications 23 . Amer. Math. Soc., New York. · Zbl 0023.21505
[52] Unterberger, J. (2009). Stochastic calculus for fractional Brownian motion with Hurst exponent \(H&gt;\frac{1}{4}\): A rough path method by analytic extension. Ann. Probab. 37 565-614. · Zbl 1172.60007 · doi:10.1214/08-AOP413
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.