×

On two unimodal descent polynomials. (English) Zbl 1392.05004

Summary: The descent polynomials of separable permutations and derangements are both demonstrated to be unimodal. Moreover, we prove that the \(\gamma\)-coefficients of the first are positive with an interpretation parallel to the classical Eulerian polynomial, while the second is spiral, a property stronger than unimodality. Furthermore, we conjecture that they are both real-rooted.

MSC:

05A05 Permutations, words, matrices
11B75 Other combinatorial number theory

References:

[1] C.A. Athanasiadis, Gamma-positivity in combinatorics and geometry, preprint, 1. arxiv:1711.05983; C.A. Athanasiadis, Gamma-positivity in combinatorics and geometry, preprint, 1. arxiv:1711.05983
[2] Brändén, P., Actions on permutations and unimodality of descent polynomials, European J. Combin., 29, 514-531, (2008), 3, 14 · Zbl 1132.05002
[3] P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, in: Handbook of Enumerative Combinatorics, CRC Press Book, 1. arXiv:1410.6601; P. Brändén, Unimodality, log-concavity, real-rootedness and beyond, in: Handbook of Enumerative Combinatorics, CRC Press Book, 1. arXiv:1410.6601
[4] Chen, W. Y.C.; Tang, R. L.; Zhao, A. F.Y., Derangement polynomials and excedances of type B, Electron. J. Combin., 16, 2, (2009), #R15. 3 · Zbl 1188.05007
[5] Désarménien, J.; Foata, D., Fonctions symétriques et séries hypergéométriques basiques multivariées, Bull. Soc. Math. France, 113, 3-22, (1985), 11 · Zbl 0644.05005
[6] Désarménien, J.; Wachs, M. L., Descent classes of permutations with a given number of fixed points, J. Combin. Theory Ser. A, 64, 311-328, (1993), 12 · Zbl 0794.05001
[7] Drake, B., An inversion theorem for labeled trees and some limits of areas under lattice paths, (2008), Brandeis University, 6
[8] Foata, D.; Schützenberger, M.-P., Théorie géométrique des polynômes eulériens, (Lecture Notes in Mathematics, vol. 138, (1970), Springer-Verlag Berlin), 1 · Zbl 0214.26202
[9] Foata, D.; Strehl, V., Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers, Math. Z., 137, 257-264, (1974), 3 · Zbl 0274.05007
[10] Gessel, I. M.; Reutenauer, C., Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A, 64, 189-215, (1993), 11 · Zbl 0793.05004
[11] González D’León, R. S., A note on the \(\gamma\)-coefficients of the tree Eulerian polynomial, Electron. J. Combin., 23, 1, (2016), #P1.20. 11 · Zbl 1330.05012
[12] Guo, V. J.W.; Zeng, J., The Eulerian distribution on involutions is indeed unimodal, J. Combin. Theory Ser. A, 113, 1061-1071, (2006), 14 · Zbl 1097.11011
[13] Kitaev, S., Patterns in permutations and words, (2011), Springer Science & Business Media, 2, 4, 14 · Zbl 1257.68007
[14] Lin, Z., Proof of gessel’s \(\gamma\)-positivity conjecture, Electron. J. Combin., 23, (2016), #P3.15. 14 · Zbl 1344.05007
[15] Lin, Z.; Zeng, J., The \(\gamma\)-positivity of basic Eulerian polynomials via group actions, J. Combin. Theory Ser. A, 135, 112-129, (2015), 1, 3 · Zbl 1366.05117
[16] Petersen, T. K., Eulerian numbers. with a foreword by richard Stanley, (Birkhäuser Advanced Texts: Basler Lehrbücher, (2015), Birkhäuser/Springer New York), 1, 2 · Zbl 1337.05001
[17] Postnikov, A.; Reiner, V.; Williams, L., Faces of generalized permutohedra, Doc. Math., 13, 207-273, (2008), 2 · Zbl 1167.05005
[18] Shapiro, L.; Stephens, A. B., Bootstrap percolation, the Schröder numbers, and the \(N\)-kings problem, SIAM J. Discrete Math., 4, 275-280, (1991), 2, 4 · Zbl 0736.05008
[19] Shin, H.; Zeng, J., Symmetric unimodal expansions of excedances in colored permutations, European J. Combin., 52, 174-196, (2016), 3 · Zbl 1327.05008
[20] Sun, H.; Wang, Y.; Zhang, H. X., Polynomials with palindromic and unimodal coefficients, Acta Math. Sin. (Engl. Ser.), 31, 565-575, (2015), 1 · Zbl 1310.05023
[21] West, J., Generating trees and the Catalan and Schröder numbers, Discrete Math., 146, 247-262, (1995), 2 · Zbl 0841.05002
[22] Zhang, X.-D., On the spiral property of the \(q\)-derangement numbers, Discrete Math., 159, 295-298, (1996), 3 · Zbl 0859.05013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.