×

Polar decomposition of regularly varying time series in star-shaped metric spaces. (English) Zbl 1387.60087

Summary: There exist two ways of defining regular variation of a time series in a star-shaped metric space: either by the distributions of finite stretches of the series or by viewing the whole series as a single random element in a sequence space. The two definitions are shown to be equivalent. The introduction of a norm-like function, called modulus, yields a polar decomposition similar to the one in Euclidean spaces. The angular component of the time series, called angular or spectral tail process, captures all aspects of extremal dependence. The stationarity of the underlying series induces a transformation formula of the spectral tail process under time shifts.

MSC:

60G70 Extreme value theory; extremal stochastic processes
60G60 Random fields

References:

[1] Basrak, B., Segers, J.: Regularly varying multivariate time series. Stochastic Process Appl 119(4), 1055-1080 (2009). doi:10.1016/j.spa.2008.05.004 · Zbl 1161.60319 · doi:10.1016/j.spa.2008.05.004
[2] Basrak, B., Krizmanić, D., Segers, J.: A functional limit theorem for dependent sequences with infinite variance stable limits. Ann Probab 40(5), 2008-2033 (2012). doi:10.1214/11-AOP669 · Zbl 1295.60041 · doi:10.1214/11-AOP669
[3] Billingsley, P.: Probability and measure, 3rd edn. Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, a Wiley-Interscience Publication (1995) · Zbl 0822.60002
[4] Billingsley, P.: Convergence of probability measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons Inc (1999) · Zbl 0944.60003
[5] Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27. Cambridge University Press, Cambridge (1987). doi:10.1017/CBO9780511721434 · Zbl 0617.26001
[6] Davis, R.A., Mikosch, T.: The extremogram: a correlogram for extreme events. Bernoulli 15(4), 977-1009 (2009). doi:10.3150/09-BEJ213 · Zbl 1200.62104 · doi:10.3150/09-BEJ213
[7] Davis, R.A., Mikosch, T., Zhao, Y.: Measures of serial extremal dependence and their estimation. Stochastic Process Appl 123(7), 2575-2602 (2013). doi:10.1016/j.spa.2013.03.014 · Zbl 1294.60076 · doi:10.1016/j.spa.2013.03.014
[8] Dombry, C., Ribatet, M.: Functional regular variations, Pareto processes and peaks over threshold. Stat. Interface 8(1), 9-17 (2015). doi:10.4310/SII.2015.v8.n1.a2 · Zbl 1386.60185
[9] Drees, H., Segers, J., Warchoł, M.: Statistics for tail processes of Markov chains. Extremes 18(3), 369-402 (2015). doi:10.1007/s10687-015-0217-1 · Zbl 1327.62322 · doi:10.1007/s10687-015-0217-1
[10] Giné, E., Hahn, M.G., Vatan, P.: Max-infinitely divisible and max-stable sample continuous processes. Probab. Theory Related Fields 87(2), 139-165 (1990). doi:10.1007/BF01198427 · Zbl 0688.60031 · doi:10.1007/BF01198427
[11] de Haan, L., Lin, T.: On convergence toward an extreme value distribution in C[0,1]. Ann. Probab. 29(1), 467-483 (2001) · Zbl 1010.62016
[12] Hult, H., Lindskog, F.: Extremal behavior of regularly varying stochastic processes. Stochastic Process. Appl. 115(2), 249-274 (2005) · Zbl 1070.60046 · doi:10.1016/j.spa.2004.09.003
[13] Hult, H., Lindskog, F.: Regular variation for measures on metric spaces. Publ. Inst. Math. 80(94), 121-140 (2006) · Zbl 1164.28005 · doi:10.2298/PIM0694121H
[14] Janssen, A., Drees, H.: A stochastic volatility model with flexible extremal dependence structure. Bernoulli 22(3), 1448-1490 (2016). doi:10.3150/15-BEJ699 · Zbl 1342.60080
[15] Janssen, A., Segers, J.: Markov tail chains. J. Appl. Probab. 51(4), 1133-1153 (2014). doi:10.1239/jap/1421763332 · Zbl 1308.60067 · doi:10.1017/S0001867800012027
[16] Kuelbs, J., Mandrekar, V.: Domains of attraction of stable measures on a Hilbert space. Studia. Math. 50, 149-162 (1974) · Zbl 0304.60002
[17] Kulik, R., Soulier, P.: Heavy tailed time series with extremal independence. Extremes 18(2), 273-299 (2015). doi:10.1007/s10687-014-0213-x · Zbl 1333.60102 · doi:10.1007/s10687-014-0213-x
[18] Leadbetter, M.R.: Extremes and local dependence in stationary sequences. Z. Wahrsch. Verw. Gebiete. 65(2), 291-306 (1983) · Zbl 0506.60030 · doi:10.1007/BF00532484
[19] Lindskog, F., Resnick, S., Roy, J.: Regularly varying measures on metric spaces: Hidden regular variation and hidden jumps. Probab. Surv. 11, 270-314 (2014) · Zbl 1317.60007 · doi:10.1214/14-PS231
[20] Mandrekar, V., Zinn, J.: Central limit problem for symmetric case: convergence to non-Gaussian laws. Studia Math. 67(3), 279-296 (1980) · Zbl 0461.60022
[21] Meinguet, T.: Maxima of moving maxima of continuous functions. Extremes 15(3), 267-297 (2012). doi:10.1007/s10687-011-0136-8 · Zbl 1329.60156 · doi:10.1007/s10687-011-0136-8
[22] Meinguet, T., Segers, J.: Regularly varying time series in Banach spaces. arXiv:1001.3262 [mathPR] (2010) · Zbl 1387.60087
[23] Mikosch, T., Wintenberger, O.: The cluster index of regularly varying sequences with applications to limit theory for functions of multivariate Markov chains. Probab. Theory Relat. Fields 159(1-2), 157-196 (2014). doi:10.1007/s00440-013-0504-1 · Zbl 1304.60034 · doi:10.1007/s00440-013-0504-1
[24] Molchanov, I.: Theory of random sets. Probability and its Applications (New York), Springer-Verlag London, Ltd., London (2005) · Zbl 1294.60076
[25] Pollard, D.: A user’s guide to measure theoretic probability, Cambridge Series in Statistical and Probabilistic Mathematics, vol 8. Cambridge University Press (2002) · Zbl 0992.60001
[26] Resnick, S.: Hidden regular variation, second order regular variation and asymptotic independence. Extremes 5(4), 303-336 (2003). doi:10.1023/A:1025148622954 · Zbl 1035.60053 · doi:10.1023/A:1025148622954
[27] Resnick, S.I.: Point processes, regular variation and weak convergence. Adv. Appl. Probab. 18(1), 66-138 (1986). doi:10.2307/1427239 · Zbl 0597.60048 · doi:10.1017/S0001867800015597
[28] Resnick, S.I.: Extreme values, regular variation, and point processes, Applied Probability. A Series of the Applied Probability Trust, vol. 4. Springer-Verlag, New York (1987). doi:10.1007/978-0-387-75953-1 · Zbl 0633.60001
[29] Resnick, S.I.: Heavy-tail phenomena. Springer Series in Operations Research and Financial Engineering, Springer, New York, probabilistic and statistical modeling (2007) · Zbl 1152.62029
[30] Samorodnitsky, G., Owada, T.: Tail measures of stochastic processes or random fields with regularly varying tails. Tech. rep., Cornell University, Ithaca, NY.. https://7c4299fd-a-62cb3a1a-s-sites.googlegroups.com/site/takashiowada54/files/tail.measure0103.pdf (2012) · Zbl 1294.60076
[31] van der Vaart, A.W., Wellner, J.A.: Weak convergence and empirical processes. Springer Series in Statistics, Springer-Verlag (1996) · Zbl 0862.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.