×

Splints of root systems for special Lie subalgebras. (English. Russian original) Zbl 1387.17021

Theor. Math. Phys. 185, No. 1, 1471-1480 (2015); translation from Teor. Mat. Fiz. 185, No. 1, 127-138 (2015).
Summary: We consider special embeddings of a Lie subalgebra into simple Lie algebras. We classify the projections of algebra root systems and obtain the conditions under which a splint appears and the branching coefficients coincide with the weight multiplicities. Although such a coincidence is infrequent, it turns out to be connected with the Gelfand-Tsetlin basis.

MSC:

17B22 Root systems
17B20 Simple, semisimple, reductive (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] Richter, D., No article title, J. Geom., 103, 103-117 (2012) · Zbl 1294.17009 · doi:10.1007/s00022-012-0109-3
[2] Lyakhovsky, V. D.; Nazarov, A. A., No article title, J. Math. Sci., 192, 91-100 (2013) · Zbl 1293.17007 · doi:10.1007/s10958-013-1376-8
[3] Dynkin, E. B., No article title, Mat. Sb., n.s., 30, 349-462 (1952) · Zbl 0048.01701
[4] Dynkin, E. B., No article title, Tr. Mosk. Mat. Obs., 1, 39-166 (1952) · Zbl 0048.01601
[5] Minchenko, A. N., No article title, Trans. Moscow Math. Soc., 67, 225-259 (2006) · Zbl 1152.17003 · doi:10.1090/S0077-1554-06-00156-7
[6] Graaf, W. A., No article title, J. Algebra, 325, 416-430 (2011) · Zbl 1255.17007 · doi:10.1016/j.jalgebra.2010.10.021
[7] Larouche, M.; Patera, J., No article title, J. Phys. A: Math. Theor., 44, 115203 (2011) · Zbl 1220.17002 · doi:10.1088/1751-8113/44/11/115203
[8] Larouche, M.; Nesterenko, M.; Patera, J., No article title, J. Phys. A: Math. Theor., 42, 485203 (2009) · Zbl 1179.17011 · doi:10.1088/1751-8113/42/48/485203
[9] Lyakhovsky, V.; Nazarov, A., No article title, J. Phys. A: Math. Theor., 44, 075205 (2011) · Zbl 1257.17034 · doi:10.1088/1751-8113/44/7/075205
[10] Lehrer, G.; Zhang, R., No article title, J. Algebra, 306, 138-174 (2006) · Zbl 1169.17003 · doi:10.1016/j.jalgebra.2006.03.043
[11] Howe, R.; Piatetski-Shapiro, I. I. (ed.); Gelbart, S. (ed.), Perspectives on invariant theory: Schur duality, 1-182 (1995), Ramat Gan · Zbl 0844.20027
[12] Stembridge, J. R., No article title, Represent. Theory, 7, 404-439 (2003) · Zbl 1060.17001 · doi:10.1090/S1088-4165-03-00150-X
[13] Stembridge, J. R.; Stembridge, J. R. (ed.); Thibon, J.-Y. (ed.); Leeuwen, M. A. A. (ed.), Computational aspects of root systems, Coxeter groups, and Weyl characters, 1-38 (2001), Tokyo · Zbl 0990.05140
[14] Plotkin, E.; Semenov, A.; Vavilov, N., No article title, Internat. J. Algebra Comput., 8, 61-95 (1998) · Zbl 0957.17006 · doi:10.1142/S0218196798000053
[15] N. Bourbaki, Lie Groups and Lie Algebras, Springer, Berlin (2002). · Zbl 0983.17001 · doi:10.1007/978-3-540-89394-3
[16] Moody, R.; Patera, J., No article title, Bull. Amer. Math. Soc., n.s., 7, 237-242 (1982) · Zbl 0494.17005 · doi:10.1090/S0273-0979-1982-15021-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.