×

Perturbed fractional eigenvalue problems. (English) Zbl 1386.35313

Summary: Let \(\Omega\subset\mathbb{R}^N\) (\(N\geq 2\)) be a bounded domain with Lipschitz boundary. For each \(p\in(1,\infty)\) and \(s\in (0,1)\) we denote by \((-\Delta_p)^s\) the fractional \((s,p)\)-Laplacian operator. In this paper we study the existence of nontrivial solutions for a perturbation of the eigenvalue problem \((-\Delta_p)^s u=\lambda |u|^{p-2}u\), in \(\Omega\), \(u=0\), in \(\mathbb{R}^N\;\Omega\), with a fractional \((t,q)\)-Laplacian operator in the left-hand side of the equation, when \(t\in(0,1)\) and \(q\in(1,\infty)\) are such that \(s-N/p=t-N/q\). We show that nontrivial solutions for the perturbed eigenvalue problem exists if and only if parameter \(\lambda\) is strictly larger than the first eigenvalue of the \((s,p)\)-Laplacian.

MSC:

35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
49J35 Existence of solutions for minimax problems
47J30 Variational methods involving nonlinear operators
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] M. Bocea, Existence of nonnegative viscosity solutions for a class of problems involving the \(\infty \)-Laplacian,, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016) · Zbl 1338.35104 · doi:10.1007/s00030-016-0373-2
[2] L. Brasco, Stability of variational eigenvalues for the fractional \(p\)-Laplacian,, Discrete Continuous Dynam. Systems - A, 36, 1813 (2016) · Zbl 1336.35270 · doi:10.3934/dcds.2016.36.1813
[3] L. Del Pezzo, An optimization problem for the first eigenvalue of the \(p\)-fractional Laplacian,, preprint · Zbl 1392.35166
[4] L. Del Pezzo, Global bifurcation for fractional \(p\)-Laplacian and an application,, Z. Anal. Anwend., 35, 411 (2016) · Zbl 1351.35247 · doi:10.4171/ZAA/1572
[5] E. Di Nezza, Hitchhiker’s guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136, 521 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[6] M. Fărcăşeanu, On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition,, Nonlinear Analysis, 116, 19 (2015) · Zbl 1488.35260 · doi:10.1016/j.na.2014.12.019
[7] R. Ferreira, Limit problems for a Fractional \(p\)-Laplacian as \(p\rightarrow\infty \),, Nonlinear Differential Equations and Applications (NoDEA), 23 (2016) · Zbl 1381.35218 · doi:10.1007/s00030-016-0368-z
[8] G. Franzina, Fractional \(p\)-eigenvalues,, Riv. Mat. Univ. Parma, 5, 373 (2014) · Zbl 1327.35286
[9] P. Grisvard, <em>Elliptic Problems in Nonsmooth Domains</em>,, Pitman (1985) · Zbl 0695.35060
[10] E. Lindgren, Fractional eigenvalues,, Calc. Var., 49, 795 (2014) · Zbl 1292.35193 · doi:10.1007/s00526-013-0600-1
[11] M. Mihăilescu, An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue,, Communications on Pure and Applied Analysis, 10, 701 (2011) · Zbl 1229.35031 · doi:10.3934/cpaa.2011.10.701
[12] M. Mihăilescu, Eigenvalues of \(-\Delta_p -\Delta_q\) under Neumann boundary condition,, Canadian Mathematical Bulletin, 59, 606 (2016) · Zbl 1488.35410 · doi:10.4153/CMB-2016-025-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.