×

Families of Riemann surfaces, uniformization and arithmeticity. (English) Zbl 1386.32015

Let \(C\) be a Riemann surface. The uniformization theorem says that the universal cover of \(C\) is conformally equivalent to only one of these Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. On the other hand, there seems to be a plenty number of possible universal covers for a complex surface. In this work, the authors consider holomorphic families of Riemann surfaces \(V\longrightarrow C\), such that both base and fibers are Riemann surfaces of finite hyperbolic type \((g,n)\), i.e., \(2-2g-n<0\), where \(g\) denotes the genus and \(n\) the number of punctures. A such family is also said to be algebraic. In the first part, they characterize completely those simply connected and bounded domains \(\mathcal{B}\) of \(\mathbb C^2\) arising as the universal covers of holomorphic families of Riemann surfaces. It turns out that a bounded and simply connected domain \(\mathcal{B}\) of \(\mathbb C^2\) is the universal cover of a (non-trivial) algebraic family of Riemann surfaces if and only if \(\mathcal{B}\) arises as the graph of a non-trivial holomorphic motion \(W\) of the unit circle \(\Delta\times \mathbb S^1\longrightarrow \mathbb C\), which was first introduced by Mañe, Sad and Sullivan. In the second part, the authors turn their attention to those families which are also arithmetic. A holomorphic familiy of Riemann surfaces is said to be arithmetic if the base and the total space are defined over an algebraic number field. Also in this case, the authors give a complete characterization of those domains arising as the universal covers of such families. They finally apply their results to characterize arithmeticity of Kodaira fibrations \(S\longrightarrow C\), that are holomorphic families of compact Riemann surfaces over a compact Riemann surface \(C\). It was already known that the base \(C\) and the fibers of such families are of genus at least two and three, respectively, in particular \(S\) must be a minimal projective surface of general type. For such families, the authors show that arithmeticity depends only on the biholomorphic class of their universal covers.

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
14J20 Arithmetic ground fields for surfaces or higher-dimensional varieties
14J29 Surfaces of general type

References:

[1] Arakelov, S. Ju., Families of algebraic curves with fixed degeneracies, Izv. Akad. Nauk SSSR Ser. Mat., 35, 1269-1293; English transl., Math. USRR Izvestija {\bf5} (1971), 1277-1302 (1971) · Zbl 0248.14004
[2] Atiyah, M. F., The signature of fibre-bundles. Global Analysis (Papers in Honor of K. Kodaira), 73-84 (1969), Univ. Tokyo Press, Tokyo · Zbl 0193.52302
[3] Barth, W.; Peters, C.; Van de Ven, A., Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 4, x+304 pp. (1984), Springer-Verlag, Berlin · Zbl 0718.14023 · doi:10.1007/978-3-642-96754-2
[4] Bers, Lipman, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc., 4, 257-300 (1972) · Zbl 0257.32012 · doi:10.1112/blms/4.3.257
[5] Bers, Lipman, Spaces of degenerating Riemann surfaces. Discontinuous groups and Riemann surfaces, Proc. Conf., Univ. Maryland, College Park, Md., 1973, Ann. of Math. Studies, No. 79, 43-55 (1974), Princeton Univ. Press, Princeton, N.J. · Zbl 0282.00013
[6] Caporaso, Lucia, On certain uniformity properties of curves over function fields, Compositio Math., 130, 1, 1-19 (2002) · Zbl 1067.14022 · doi:10.1023/A:1013703430436
[7] BB B. Chen and J. Zhang, Holomorphic motion and invariant metrics, Analytic Geometry of the Bergman Kernel and Related Topics, RIMS Research Collections 1487 (2006), 27-39.
[8] Chirka, E. M., Holomorphic motions and the uniformization of holomorphic families of Riemann surfaces, Uspekhi Mat. Nauk. Russian Math. Surveys, 67 67, 6, 1091-1165 (2012) · Zbl 1266.30027 · doi:10.1070/RM2012v067n06ABEH004819
[9] Deligne, P.; Mumford, D., The irreducibility of the space of curves of given genus, Inst. Hautes \'Etudes Sci. Publ. Math., 36, 75-109 (1969) · Zbl 0181.48803
[10] Earle, Clifford J.; Fowler, Robert S., Holomorphic families of open Riemann surfaces, Math. Ann., 270, 2, 249-273 (1985) · Zbl 0537.30036 · doi:10.1007/BF01456185
[11] Earle, C. J.; Kra, I.; Krushkal\textprime, S. L., Holomorphic motions and Teichm\"uller spaces, Trans. Amer. Math. Soc., 343, 2, 927-948 (1994) · Zbl 0812.30018 · doi:10.2307/2154750
[12] Earle, Clifford J.; Marden, Albert, On holomorphic families of Riemann surfaces. Conformal dynamics and hyperbolic geometry, Contemp. Math. 573, 67-97 (2012), Amer. Math. Soc., Providence, RI · Zbl 1264.30032 · doi:10.1090/conm/573/11413
[13] Farkas, Hershel M.; Kra, Irwin, Riemann surfaces, Graduate Texts in Mathematics 71, xi+337 pp. (1980), Springer-Verlag, New York-Berlin · Zbl 0764.30001
[14] Gardiner, Frederick P.; Jiang, Yunping; Wang, Zhe, Holomorphic motions and related topics. Geometry of Riemann surfaces, London Math. Soc. Lecture Note Ser. 368, 156-193 (2010), Cambridge Univ. Press, Cambridge · Zbl 1198.30019
[15] Girondo, Ernesto; Gonz\'alez-Diez, Gabino, Introduction to compact Riemann surfaces and dessins d’enfants, London Mathematical Society Student Texts 79, xii+298 pp. (2012), Cambridge University Press, Cambridge · Zbl 1253.30001
[16] Gonz\'alez-Diez, Gabino, Variations on Belyi’s theorem, Q. J. Math., 57, 3, 339-354 (2006) · Zbl 1123.14016 · doi:10.1093/qmath/hai021
[17] Gonz\'alez-Diez, Gabino, Belyi’s theorem for complex surfaces, Amer. J. Math., 130, 1, 59-74 (2008) · Zbl 1158.14015 · doi:10.1353/ajm.2008.0004
[18] Gonz\'alez-Diez, Gabino; Reyes-Carocca, Sebasti\'an, The arithmeticity of a Kodaira fibration is determined by its universal cover, Comment. Math. Helv., 90, 2, 429-434 (2015) · Zbl 1323.30054 · doi:10.4171/CMH/359
[19] Griffiths, Phillip A., Complex-analytic properties of certain Zariski open sets on algebraic varieties, Ann. of Math. (2), 94, 21-51 (1971) · Zbl 0221.14008 · doi:10.2307/1970733
[20] Grunewald, F.; Jaikin-Zapirain, A.; Zalesskii, P. A., Cohomological goodness and the profinite completion of Bianchi groups, Duke Math. J., 144, 1, 53-72 (2008) · Zbl 1194.20029 · doi:10.1215/00127094-2008-031
[21] Hartshorne, Robin, Algebraic geometry, Graduate Texts in Mathematics, No. 52, xvi+496 pp. (1977), Springer-Verlag, New York-Heidelberg · Zbl 0367.14001
[22] Hirzebruch, F., The signature of ramified coverings. Global Analysis (Papers in Honor of K. Kodaira), 253-265 (1969), Univ. Tokyo Press, Tokyo · Zbl 0208.51802
[23] Howard, Alan; Sommese, Andrew J., On the theorem of de Franchis, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10, 3, 429-436 (1983) · Zbl 0534.14016
[24] Hubbard, John Hamal, Teichm\`“uller theory and applications to geometry, topology, and dynamics. Vol. 1, xx+459 pp. (2006), Matrix Editions, Ithaca, NY · Zbl 1102.30001
[25] Imayoshi, Y\^oichi, Holomorphic families of Riemann surfaces and Teichm\"uller spaces. Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, N.Y., 1978, Ann. of Math. Stud. 97, 277-300 (1981), Princeton Univ. Press, Princeton, N.J. · Zbl 0476.32025
[26] Imayoshi, Yoichi; Nishimura, Minori, A remark on universal coverings of holomorphic families of Riemann surfaces, Kodai Math. J., 28, 2, 230-247 (2005) · Zbl 1082.30032 · doi:10.2996/kmj/1123767005
[27] Imayoshi, Y\^oichi; Shiga, Hiroshige, A finiteness theorem for holomorphic families of Riemann surfaces. Holomorphic functions and moduli, Vol.II, Berkeley, CA, 1986, Math. Sci. Res. Inst. Publ. 11, 207-219 (1988), Springer, New York · Zbl 0696.30044 · doi:10.1007/978-1-4613-9611-6\_15
[28] Johnson, F. E. A., Linear properties of poly-Fuchsian groups, Collect. Math., 45, 2, 183-203 (1994) · Zbl 0824.20043
[29] Kas, Arnold, On deformations of a certain type of irregular algebraic surface, Amer. J. Math., 90, 789-804 (1968) · Zbl 0202.51702 · doi:10.2307/2373484
[30] Kasparian, Azniv, When does a bounded domain cover a projective manifold? (Survey), Conference on Geometry and Mathematical Physics (Zlatograd, 1995), Serdica Math. J., 23, 2, 165-176 (1997) · Zbl 0941.32019
[31] Kawamata, Yujiro, Kodaira dimension of algebraic fiber spaces over curves, Invent. Math., 66, 1, 57-71 (1982) · Zbl 0461.14004 · doi:10.1007/BF01404756
[32] Kobayashi, Shoshichi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 318, xiv+471 pp. (1998), Springer-Verlag, Berlin · Zbl 0917.32019 · doi:10.1007/978-3-662-03582-5
[33] Kodaira, K., A certain type of irregular algebraic surfaces, J. Analyse Math., 19, 207-215 (1967) · Zbl 0172.37901 · doi:10.1007/BF02788717
[34] Maehara, Kazuhisa, A finiteness property of varieties of general type, Math. Ann., 262, 1, 101-123 (1983) · Zbl 0438.14011 · doi:10.1007/BF01474173
[35] Ma\~n\'e, R.; Sad, P.; Sullivan, D., On the dynamics of rational maps, Ann. Sci. \'Ecole Norm. Sup. (4), 16, 2, 193-217 (1983) · Zbl 0524.58025
[36] Mitra, Sudeb, On extensions of holomorphic motions-a survey. Geometry of Riemann surfaces, London Math. Soc. Lecture Note Ser. 368, 283-308 (2010), Cambridge Univ. Press, Cambridge · Zbl 1201.30023
[37] Mumford, David, Abelian quotients of the Teichm\"uller modular group, J. Analyse Math., 18, 227-244 (1967) · Zbl 0173.22903 · doi:10.1007/BF02798046
[38] Mumford, David, Algebraic geometry. I, Grundlehren der Mathematischen Wissenschaften, No. 221, x+186 pp. (1976), Springer-Verlag, Berlin-New York · Zbl 0821.14001
[39] Mumford, David, Towards an enumerative geometry of the moduli space of curves. Arithmetic and geometry, Vol. II, Progr. Math. 36, 271-328 (1983), Birkh\"auser Boston, Boston, MA · Zbl 0554.14008
[40] Nag, Subhashis, The complex analytic theory of Teichm\"uller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, xiv+427 pp. (1988), John Wiley & Sons, Inc., New York · Zbl 0667.30040
[41] Selberg, Atle, On discontinuous groups in higher-dimensional symmetric spaces. Contributions to function theory, internat. Colloq. Function Theory, Bombay, 1960, 147-164 (1960), Tata Institute of Fundamental Research, Bombay · Zbl 0201.36603
[42] Serre, Jean-Pierre, Galois cohomology, x+210 pp. (1997), Springer-Verlag, Berlin · Zbl 0902.12004 · doi:10.1007/978-3-642-59141-9
[43] Shabat, G. B., The complex structure of domains that cover algebraic surfaces, Funkcional. Anal. i Prilo\v zen., 11, 2, 67-75, 96; English transl., Funct. Anal. Appl. {\bf11} (1977), 135-142 (1977) · Zbl 0417.32014
[44] Shabat, G. B., Local reconstruction of complex algebraic surfaces from universal coverings, Funktsional. Anal. i Prilozhen., 17, 2, 90-91 (1983) · Zbl 0543.14007
[45] Shafarevich, I. R., Basic algebraic geometry, xv+439 pp. (1977), Springer-Verlag, Berlin-New York · Zbl 0362.14001
[46] Slodkowski, Zbigniew, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc., 111, 2, 347-355 (1991) · Zbl 0741.32009 · doi:10.2307/2048323
[47] Wang X. Wang, Variation of the Bergman kernels under deformation of complex structures, arXiv:1307.5660.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.