×

Projective nested Cartesian codes. (English) Zbl 1386.14099

The present paper introduces a new family of linear error-correcting codes, the projective nested Cartesian codes and, using techniques of commutative algebra as Hilbert functions and Gröbner bases, studies their parameters.
Projective Cartesian codes (respectively affine Cartesian codes) of order \(d\) over a finite field \(\mathbb{F}_q\) are the image of an evaluation map of the homogeneous polynomials of degree \(d\) of \(\mathbb{F}_q[X_0,\dots,X_n]\) (respectively polynomials of \(\mathbb{F}_q[X_1,\dots,X_n]\) of degree up to \(d\)) on the points of a subset \(\chi:=A_0\times \dots \times A_n\subseteq \mathbb{P}^n(\mathbb{F}_q)\) (respectively \(\chi:=A_1\times \dots \times A_n\subseteq \mathbb{A}^n(\mathbb{F}_q)\)), \(A_i\subseteq \mathbb{F}_q\). The projective Reed-Muller codes are projective Cartesian codes with \(A_i=\mathbb{F}_q,\, \forall i\).
Section 2 gives the definition of projective nested Cartesian codes (projective Cartesian codes with additional conditions on the \(A_i\)), family including the projective Reed-Muller codes. Then formulas given the length and dimension of those codes are provided (Theorem 2.8).
Section 3 deals with the minimum distance of projective nested Cartesian codes. Lemma 3.1 gives an upper bound for that distance and Theorem 3.8 shows that the bound is the true minimum distance when the \(A_i\) are a projective nested product of fields (this is trivially the case for projective Reed-Muller codes). Finally Corollary 3.10 shows the relation between these last codes and affine Cartesian codes.

MSC:

14G50 Applications to coding theory and cryptography of arithmetic geometry
11T71 Algebraic coding theory; cryptography (number-theoretic aspects)
94B27 Geometric methods (including applications of algebraic geometry) applied to coding theory

References:

[1] Ballet, S., Rolland, R.: On low weight codewords of generalized affine and projective Reed-Muller codes. Des. Codes Cryptogr. 73(2), 271-297 (2014) · Zbl 1335.94100 · doi:10.1007/s10623-013-9911-7
[2] Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Mathematical Institute, University of Innsbruck, Austria. Ph.D. Thesis. An English translation appeared in J. Symbolic Comput. 41 (2006) 475-511 (1965) · Zbl 1245.13020
[3] Carvalho, C.: On the second Hamming weight of some Reed-Muller type codes. Finite Fields Appl. 24, 88-94 (2013) · Zbl 1306.94118 · doi:10.1016/j.ffa.2013.06.004
[4] Carvalho, C., Neumann, V.G.L.: Projective Reed-Muller type codes on rational normal scrolls. Finite Fields Appl. 37, 85-107 (2016) · Zbl 1402.94124 · doi:10.1016/j.ffa.2015.09.004
[5] Couvreur, A., Duursma, I.: Evaluation codes from smooth quadric surfaces and twisted Segre varieties. Des. Codes Cryptogr. 66, 291-303 (2013) · Zbl 1263.94038 · doi:10.1007/s10623-012-9692-4
[6] Cox, D., Little, J., O’Shea, D.: Ideals, varieties and algorithms, 3rd ed. Springer, New York (2007) · Zbl 1118.13001
[7] Duursma, I., Rentería, C., Tapia-Recillas, H.: Reed-Muller codes on complete intersections. Appl. Algebra Eng. Commun. Comput. 11, 455-462 (2001) · Zbl 1076.94043 · doi:10.1007/s002000000047
[8] Fitzgerald, J., Lax, R.F.: Decoding affine variety codes using Göbner bases. Des. Codes Cryptogr. 13(2), 147-158 (1998) · Zbl 0905.94027 · doi:10.1023/A:1008274212057
[9] Geil, O., Thomsen, C.: Weighted Reed-Muller codes revisited. Des. Codes Cryptogr. 66(1-3), 195-220 (2013) · Zbl 1380.94147 · doi:10.1007/s10623-012-9680-8
[10] González-Sarabia, M., Rentería, C., Tapia-Recillas, H.: Reed-Muller-type codes over the Segre variety. Finite Fields Appl. 8, 511-518 (2002) · Zbl 1020.94029 · doi:10.1016/S1071-5797(02)90360-6
[11] Lachaud, G.: The parameters of projective Reed-Muller codes. Discrete Math. 81(2), 217-221 (1990) · Zbl 0696.94015 · doi:10.1016/0012-365X(90)90155-B
[12] López, H.H., Rentería-Márquez, C., Villarreal, R.H.: Affine cartesian codes. Des. Codes Cryptogr. 71(1), 5-19 (2014) · Zbl 1312.94118 · doi:10.1007/s10623-012-9714-2
[13] Rentería, C., Tapia-Recillas, H.: Reed-Muller codes: an ideal theory approach. Commun. Algebra 25(2), 401-413 (1997) · Zbl 0868.94045
[14] Sørensen, A.: Projective Reed-Muller codes. IEEE Trans. Inf. Theory 37(6), 1567-1576 (1991) · Zbl 0741.94016 · doi:10.1109/18.104317
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.