×

Laminar hypersonic leading edge separation – a numerical study. (English) Zbl 1383.76317


MSC:

76K05 Hypersonic flows
76N20 Boundary-layer theory for compressible fluids and gas dynamics
76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

US3D
Full Text: DOI

References:

[1] Blottner, F. G., Johnson, M. & Ellis, M.1971 Chemically reacting viscous flow program for multi-component gas mixtures. Tech. Rep. Sandia Labs., Albuquerque, N. Mex.
[2] Bodonyi, R. J.; Smith, F. T., Shock-wave laminar boundary-layer interaction in supercritical transonic flow, Comput. Fluids, 14, 2, 97-108, (1986) · Zbl 0589.76077
[3] Brown, S. N.; Cheng, H. K.; Lee, C. J., Inviscid – viscous interaction on triple-deck scales in a hypersonic flow with strong wall cooling, J. Fluid Mech., 220, 309-337, (1990) · Zbl 0711.76055
[4] Brown, S. N.; Stewartson, K., Laminar separation, Annu. Rev. Fluid Mech., 1, 1, 45-72, (1969)
[5] Brown, S. N.; Stewartson, K.; Williams, P. G., Hypersonic self-induced separation, Phys. Fluids, 18, 6, 633-639, (1975)
[6] Burggraf, O. R., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24, 1, 113-151, (1966)
[7] Burggraf, O. R.1973Inviscid reattachment of a separated shear layer. In Proceedings of the 3rd International Conference on Numerical Methods in Fluid Mechanics, pp. 39-47. Springer. doi:10.1007/BFb0112675 · Zbl 0261.76051
[8] Burggraf, O. R.1975 Asymptotic theory of separation and reattachment of a laminar boundary layer on a compression ramp. Tech. Rep. DTIC Document.
[9] Burggraf, O. R.; Rizzetta, D.; Werle, M. J.; Vatsa, V. N., Effect of Reynolds number on laminar separation of a supersonic stream, AIAA J., 17, 4, 336-343, (1979) · Zbl 0396.76040 · doi:10.2514/3.61131
[10] Candler, G. V., Johnson, H. B., Nompelis, I., Gidzak, V. M., Subbareddy, P. K. & Barnhardt, M.2015Development of the US3D code for advanced compressible and reacting flow simulations. In 53rd AIAA Aerospace Sciences Meeting, p. 1893.
[11] Candler, G. V.; Subbareddy, P. K.; Brock, J. M., Advances in computational fluid dynamics methods for hypersonic flows, J. Spacecr. Rockets, 52, 1, 17-28, (2014)
[12] Cassel, K. W.; Ruban, A. I.; Walker, J. A., An instability in supersonic boundary-layer flow over a compression ramp, J. Fluid Mech., 300, 265-285, (1995) · Zbl 0848.76020
[13] Cassel, K. W.; Ruban, A. I.; Walker, J. D. A., The influence of wall cooling on hypersonic boundary-layer separation and stability, J. Fluid Mech., 321, 189-216, (1996) · Zbl 0890.76073
[14] Chapman, D. R., Kuehn, D. M. & Larson, H. K.1958 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Tech. Rep. 1356.
[15] Cheng, H. K., Perspectives on hypersonic viscous flow research, Annu. Rev. Fluid Mech., 25, 1, 455-484, (1993)
[16] Drayna, T. W., Nompelis, I. & Candler, G. V.2006 Numerical simulation of the aedc waverider at mach 8. AIAA Paper 2816.
[17] Edney, B. E., Effects of shock impingement on the heat transfer around blunt bodies, AIAA J., 6, 1, 15-21, (1968)
[18] Elliott, J. W.; Smith, F. T., Separated supersonic flow past a trailing edge at incidence, Comput. Fluids, 14, 2, 109-116, (1986) · Zbl 0592.76087
[19] Gadd, G. E., An experimental investigation of heat transfer effects on boundary layer separation in supersonic flow, J. Fluid Mech., 2, 2, 105-122, (1957) · doi:10.1017/S0022112057000014
[20] Gajjar, J.; Smith, F. T., On hypersonic self-induced separation, hydraulic jumps and boundary layers with algebraic growth, Mathematika, 30, 1, 77-93, (1983) · Zbl 0514.76035
[21] Hayes, W. D.; Probstein, R. F., Hypersonic Flow Theory, (1959), Elsevier · Zbl 0084.42202
[22] Higdon, J. L., Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities, J. Fluid Mech., 159, 195-226, (1985) · Zbl 0574.76037
[23] Holden, M. S., Wadhams, T. P., Maclean, M. G. & Dufrene, A. T.2013 Measurements of real gas effects on regions of laminar shock wave/boundary layer interaction in hypervelocity flows for blindcode validation studies. Air Force Office of Scientific Research Rep. AFRL-OSR-VA-TR-2013-0134. Virginia, USA.
[24] Jackson, A. P.; Hillier, R.; Soltani, S., Experimental and computational study of laminar cavity flows at hypersonic speeds, J. Fluid Mech., 427, 329-358, (2001) · Zbl 0963.76502
[25] Katzer, E., On the lengthscales of laminar shock/boundary-layer interaction, J. Fluid Mech., 206, 477-496, (1989)
[26] Kerimbekov, R. M.; Ruban, A. I.; Walker, J. D. A., Hypersonic boundary-layer separation on a cold wall, J. Fluid Mech., 274, 163-195, (1994) · Zbl 0837.76019
[27] Khorrami, A. F.; Smith, F. T., Hypersonic aerodynamics on thin bodies with interaction and upstream influence, J. Fluid Mech., 277, 85-108, (1994) · Zbl 0865.76034 · doi:10.1017/S0022112094002697
[28] Korolev, G. L.; Gajjar, J. B.; Ruban, A. I., Once again on the supersonic flow separation near a corner, J. Fluid Mech., 463, 173-199, (2002) · Zbl 1128.76330 · doi:10.1017/S0022112002008777
[29] Leite, P. H. M.; Santos, W. F. N., Computational analysis of the flow field structure of a non-reacting hypersonic flow over forward-facing steps, J. Fluid Mech., 763, 460-499, (2015) · doi:10.1017/jfm.2014.677
[30] Lewis, J. E.; Kubota, T.; Lees, L., Experimental investigation of supersonic laminar, two-dimensional boundary-layer separation in a compression corner with and without cooling, AIAA J., 6, 1, 7-14, (1968) · Zbl 0155.54801 · doi:10.2514/3.4706
[31] Lighthill, M. J., On boundary layers and upstream influence. II. Supersonic flows without separation, Proc. R. Soc. Lond. A, 217, 1131, 478-507, (1953) · Zbl 0053.14702 · doi:10.1098/rspa.1953.0075
[32] Messiter, A. F., Boundary-layer flow near the trailing edge of a flat plate, SIAM J. Appl. Maths, 18, 1, 241-257, (1970) · Zbl 0195.27701 · doi:10.1137/0118020
[33] Millikan, R. C.; White, D. R., Systematics of vibrational relaxation, J. Chem. Phys., 39, 12, 3209-3213, (1963) · doi:10.1063/1.1734182
[34] Moffatt, H. K., Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18, 1, 1-18, (1964) · Zbl 0118.20501
[35] Mohri, K.; Hillier, R., Computational and experimental study of supersonic flow over axisymmetric cavities, Shock Waves, 21, 3, 175-191, (2011)
[36] Neiland, V. Y., Theory of laminar boundary layer separation in supersonic flow, Fluid Dyn., 4, 4, 33-35, (1969) · Zbl 0256.76041
[37] Neiland, V. Y., Asymptotic theory of plane steady supersonic flows with separation zones, Fluid Dyn., 5, 3, 372-381, (1970)
[38] Neiland, V. Y., Boundary-layer separation on a cooled body and its interaction with a hypersonic flow, Fluid Dyn., 8, 6, 931-939, (1973)
[39] Neiland, V. Y.; Boglepov, V. V.; Dudin, G. N.; Lipatov, I., Asymptotic Theory of Supersonic Viscous Gas Flows, (2008), Butterworth-Heinemann
[40] Neiland, V. Y., Sokolov, L. A. & Shvedchenko, V. V.2009Temperature factor effect on separated flow features in supersonic gas flow. In BAIL 2008-Boundary and Interior Layers, pp. 39-54. Springer. · Zbl 1179.35222
[41] Nompelis, I. & Candler, G. V.2014US3D predictions of double-cone and hollow cylinder-flare flows at high enthalpy. In 44th AIAA Fluid Dynamics Conference.
[42] Park, C., Review of chemical-kinetic problems of future nasa missions in earth entries, J. Thermophys. Heat Transfer, 7, 3, 385-398, (1993)
[43] Park, G.; Gai, S. L.; Neely, A. J., Laminar near wake of a circular cylinder at hypersonic speeds, AIAA J., 48, 1, 236-248, (2010)
[44] Rizzetta, D. P.1976 Asymptotic solution for two-dimensional viscous supersonic and hypersonic flows past compression and expansion corners. PhD thesis, Ohio State University.
[45] Rizzetta, D. P.; Burggraf, O. R.; Jenson, R., Triple-deck solutions for viscous supersonic and hypersonic flow past corners, J. Fluid Mech., 89, 3, 535-552, (1978)
[46] Roy, C. J., Grid convergence error analysis for mixed-order numerical schemes, AIAA J., 41, 4, 595-604, (2003)
[47] Seddougui, S. O.; Bowles, R. I.; Smith, F. T., Surface-cooling effects on compressible boundary-layer instability, Eur. J. Mech. (B/Fluids), 10, 2, 117-145, (1991) · Zbl 0725.76043
[48] Shvedchenko, V. V., About the secondary separation at supersonic flow over a compression ramp, TsAGI Sci. J., 40, 5, 587-607, (2009)
[49] Smith, F. T., Steady and unsteady boundary-layer separation, Annu. Rev. Fluid Mech., 18, 1, 197-220, (1986) · Zbl 0615.76048
[50] Smith, F. T., A reversed flow dingularity in interacting boundary layers, Proc. R. Soc. Lond. A, 420, 1858, 21-52, (1988) · Zbl 0655.76030
[51] Smith, F. T.; Khorrami, A. F., The interactive breakdown in supersonic ramp flow, J. Fluid Mech., 224, 197-215, (1991) · Zbl 0765.76042
[52] Sridhar, V.; Gai, S. L.; Kleine, H., Oscillatory characteristics of shallow open cavities in supersonic flow, AIAA J., 54, 11, 3495-3508, (2016)
[53] Stewartson, K., The Theory of Laminar Boundary Layers in Compressible Fluids, vol. 3, (1964), Cambridge University Press · Zbl 0114.18705
[54] Stewartson, K., Multistructured boundary layers on flat plates and related bodies, Adv. Appl. Mech., 14, 145-239, (1974)
[55] Stewartson, K., On the asymptotic theory of separated and unseparated fluid motions, SIAM J. Appl. Maths, 28, 2, 501-518, (1975) · Zbl 0322.76017
[56] Stewartson, K.; Williams, P. G., Self-induced separation, Proc. R. Soc. Lond. A, 312, 1509, 181-206, (1969) · Zbl 0184.52903
[57] Stewartson, K.; Williams, P. G., On self-induced separation II, Mathematika, 20, 1, 98-108, (1973) · Zbl 0275.76028
[58] Sychev, V. V.; Ruban, A. I.; Sychev, V. V.; Korolev, G. L., Asymptotic Theory of Separated Flows, (1998), Cambridge University Press · Zbl 0944.76003 · doi:10.1017/CBO9780511983764
[59] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136, (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[60] Wilke, C. R., A viscosity equation for gas mixtures, J. Chem. Phys., 18, 4, 517-519, (1950) · doi:10.1063/1.1747673
[61] Wright, M. J.; Candler, G. V.; Bose, D., Data parallel line relaxation method for the Navier-Stokes equations, AIAA J., 36, 9, 1603-1609, (1998) · doi:10.2514/2.586
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.