×

Oscillating solutions for nonlinear Helmholtz equations. (English) Zbl 1383.35060

Summary: Existence results for radially symmetric oscillating solutions for a class of nonlinear autonomous Helmholtz equations are given and their exact asymptotic behaviour at infinity is established. Some generalizations to nonautonomous radial equations as well as existence results for nonradial solutions are found. Our theorems prove the existence of standing waves solutions of nonlinear Klein-Gordon or Schrödinger equations with large frequencies.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35Q55 NLS equations (nonlinear Schrödinger equations)

References:

[1] Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519-543 (1994) · Zbl 0805.35028 · doi:10.1006/jfan.1994.1078
[2] Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics, vol. 104. Cambridge University Press, Cambridge (2007) · Zbl 1125.47052 · doi:10.1017/CBO9780511618260
[3] Benci, V., Fortunato, D.: Variational Methods in Nonlinear Field Equations. Solitary Waves Hylomorphic Solitons and Vortices. Springer Monographs in Mathematics. Springer, Cham (2014) · Zbl 1312.35001
[4] Boccardo, L., Escobedo, M., Peral, I.: A Dirichlet problem involving critical exponents. Nonlinear Anal. 24(11), 1639-1648 (1995) · Zbl 0828.35042 · doi:10.1016/0362-546X(94)E0054-K
[5] Berestycki, H., Gallouët, T., Kavian, O.: Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297(5), 307-310 (1983) · Zbl 0544.35042
[6] Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313-345 (1983) · Zbl 0533.35029
[7] Brezis, H., Oswald, L.: Remarks on sublinear elliptic equations. Nonlinear Anal. 10(1), 55-64 (1986) · Zbl 0593.35045 · doi:10.1016/0362-546X(86)90011-8
[8] Chen, Y.F., Beckwitt, K., Wise, F.W., Malomed, B.A.: Criteria for the experimental observation of multidimensional optical solitons in saturable media. Phys. Rev. E 70, 046610 (2004) · doi:10.1103/PhysRevE.70.046610
[9] Christodoulides, D.N., Coskun, T.H., Mitchell, M., Segev, M.: Theory of incoherent self-focusing in biased photorefractive media. Phys. Rev. Lett. 78, 646-649 (1997) · doi:10.1103/PhysRevLett.78.646
[10] Evequoz, G.: A dual approach in Orlicz spaces for the nonlinear Helmholtz equation. Z. Angew. Math. Phys. 66(6), 2995-3015 (2015) · Zbl 1333.35016 · doi:10.1007/s00033-015-0572-4
[11] Evequoz, G., Weth, T.: Branch continuation inside the essential spectrum for the nonlinear Schrödinger equation. J. Fixed Point Theory Appl. 19, 475-502 (2017) · Zbl 1401.35095 · doi:10.1007/s11784-016-0362-4
[12] Evequoz, G., Weth, T.: Real solutions to the nonlinear Helmholtz equation with local nonlinearity. Arch. Ration. Mech. Anal. 211(2), 359-388 (2014) · Zbl 1285.35003 · doi:10.1007/s00205-013-0664-2
[13] Evequoz, G., Weth, T.: Dual variational methods and nonvanishing for the nonlinear Helmholtz equation. Adv. Math. 280, 690-728 (2015) · Zbl 1317.35030 · doi:10.1016/j.aim.2015.04.017
[14] Farina, A.: Some symmetry results and Liouville-type theorems for solutions to semilinear equations. Nonlinear Anal. 121, 223-229 (2015) · Zbl 1318.35037 · doi:10.1016/j.na.2015.02.004
[15] Gui, C., Luo, X., Zhou, F.: Asymptotic behavior of oscillating radial solutions to certain nonlinear equations. Part II. Methods Appl. Anal. 16(4), 459-468 (2009) · Zbl 1214.34030
[16] Gui, C., Zhou, F.: Asymptotic behavior of oscillating radial solutions to certain nonlinear equations. Methods Appl. Anal. 15(3), 285-295 (2008) · Zbl 1221.35147
[17] Gutiérrez, S.: Non trivial \[L^q\] Lq solutions to the Ginzburg-Landau equation. Math. Ann. 328(1-2), 125 (2004) · Zbl 1109.35045
[18] Reichel, W., Walter, W.: Radial solutions of equations and inequalities involving the p-Laplacian. J. Inequal. Appl. 1(1), 47-71 (1997) · Zbl 0883.34024
[19] Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7(3), 447-526 (1982) · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[20] Soave, N., Verzini, G.: Bounded solutions for a forced bounded oscillator without friction. J. Differ. Equ. 256, 2526-2558 (2014) · Zbl 1294.34042 · doi:10.1016/j.jde.2014.01.015
[21] Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517
[22] Struwe, M.: Variational Methods, Results in Mathematics and Related Areas, vol. 34, 4th edn. Springer, Berlin (2008) · Zbl 1284.49004
[23] Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations. Mathematics in Science and Engineering, vol. 48. Academic Press, New York (1968) · Zbl 0191.09904 · doi:10.1016/S0076-5392(08)62261-4
[24] Swanson, C.A.: Semilinear second-order elliptic oscillation. Can. Math. Bull. 22(2), 139-157 (1979) · Zbl 0412.35008 · doi:10.4153/CMB-1979-021-0
[25] Stuart, C.A., Zhou, H.S.: Applying the mountain pass theorem to an asymptotically linear elliptic equation on \[{\mathbb{R}}^N\] RN. Commun. Partial Differ. Equ. 24(9-10), 1731-1758 (1999) · Zbl 0935.35043 · doi:10.1080/03605309908821481
[26] Verzini, G.: Bounded solutions to superlinear ODE’s: a variational approach. Nonlinearity 16(6), 2013-2028 (2003) · Zbl 1048.34078 · doi:10.1088/0951-7715/16/6/308
[27] Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston, MA (1996) · Zbl 0856.49001
[28] Yang, J.: Stability of vortex solitons in a photorefractive optical lattice. New J. Phys. 6(1), 47 (2004) · doi:10.1088/1367-2630/6/1/047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.