×

Observability inequalities for parabolic equations over measurable sets and some applications related to the bang-bang property for control problems. (English) Zbl 1381.49006

Summary: This article presents two observability inequalities for the heat equation over \(\Omega \times (0,T)\). In the first one, the observation is from a subset of positive measure in \(\Omega \times (0,T)\), while in the second, the observation is from a subset of positive surface measure on \(\partial\Omega \times (0,T)\). We will provide some applications for the above-mentioned observability inequalities, the bang-bang property for the minimal time, time optimal and minimal norm control problems, and also establish new open problems related to observability inequalities and the aforementioned applications.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
58E25 Applications of variational problems to control theory
93B05 Controllability
93B07 Observability
35K05 Heat equation
Full Text: DOI

References:

[1] J.Apraiz, L. Escauriaza. Null-Control and Measurable Sets. ESAIM: Control, Optimisation and Calculus of Variations, Tome. 19, no. 1, p. 239-254, (2013); Apraiz, J.; Escauriaza, L., ESAIM: Control, Optimisation and Calculus of Variations, Tome, Null-Control and Measurable Sets, 19, no. 1, 239-254 (2013) · Zbl 1262.35118
[2] J. Apraiz, L. Escauriaza, G. Wang, C. Zhang, Observability Inequalities and Measurable Sets. Journal of the European Mathematical Society 16, 2433-2475, (2014).; Apraiz, J.; Escauriaza, L.; Wang, G.; Zhang, C., Journal of the European Mathematical Society, Observability Inequalities and Measurable Sets, 16, 2433-2475 (2014) · Zbl 1302.93040 · doi:10.4171/JEMS/490
[3] R. M. Brown, The method of layer potentials for the heat equation in Lipschitz cylinders. Amer. J. Math. 111, 339-379, (1989); Brown, R. M., The method of layer potentials for the heat equation in Lipschitz cylinders, Amer. J. Math, 111, 339-379 (1989) · Zbl 0696.35065
[4] R. M. Brown, The initial-Neumann problem for the heat equation in Lipschitz cylinders. Trans. of the Amer. Math. Soc. 130, 1, 1-52, (1990).; Brown, R. M., The initial-Neumann problem for the heat equation in Lipschitz cylinders, Trans. of the Amer. Math. Soc, 130, 1, 1-52 (1990) · Zbl 0714.35037
[5] E. B. Fabes, N. Garofalo, S. Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equation. Illinois J. Math. 30, 536-565, (1986).; Fabes, E. B.; Garofalo, N.; Salsa, S., A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equation, Illinois J. Math, 30, 536-565 (1986) · Zbl 0625.35006
[6] E. B. Fabes, S. Salsa. Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders. Trans. Amer. Math. Soc. 279, 635-650, (1983); Fabes, E. B.; Salsa, S., Estimates of caloric measure and the initial-Dirichlet problem for the heat equation in Lipschitz cylinders, Trans. Amer. Math. Soc, 279, 635-650 (1983) · Zbl 0542.35042
[7] A. Fursikov, O.Yu. Imanuvilov. Controllability of Evolution Equations. Seoul National University, Korea, Lecture Notes Series 34, (1996); Fursikov, A.; Imanuvilov, O. Yu, Controllability of Evolution Equations, 34 (1996) · Zbl 0862.49004
[8] G. Lebeau, L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Eqtn. 20, 335-356, (1995); Lebeau, G.; Robbiano, L., Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Eqtn, 20, 335-356 (1995) · Zbl 0819.35071
[9] G. M. Lieberman. Second order parabolic differential equations. Singapore; World Scientific, (1996).; Lieberman, G. M., Second order parabolic differential equations (1996) · Zbl 0884.35001
[10] J.L. Lions.Optimal Control for Systems Governed by Partial Differential Equations. Springer-Verlar, Berlin, Heildeberg, New York, (1971); Lions, J. L., Optimal Control for Systems Governed by Partial Differential Equations (1971) · Zbl 0203.09001
[11] K. D. Phung, G. Wang. An observability estimate for parabolic equations from a measurable set in time and its applications. J. Eur. Math. Soc. 15, 681-703, (2013).; Phung, K. D.; Wang, G., An observability estimate for parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc, 15, 681-703 (2013) · Zbl 1258.93037 · doi:10.4171/JEMS/371
[12] K. D. Phung, G. Wang, X. Zhang. On the existence of time optimal controls for linear evolution equations, Discrete Contin. Dyn. Syst. Ser. B, 8, pp. 925-941, (2007).; Phung, K. D.; Wang, G.; Zhang, X., On the existence of time optimal controls for linear evolution equations, Discrete Contin. Dyn. Syst. Ser. B, 8, 925-941 (2007) · Zbl 1210.49008 · doi:10.3934/dcdsb.2007.8.925
[13] S. Vessella, A continuous dependence result in the analytic continuation problem. Forum Math. 11, 6, 695-703, (1999); Vessella, S., A continuous dependence result in the analytic continuation problem, Forum Math, 11, 6, 695-703 (1999) · Zbl 0933.35192
[14] G. Wang. \(L^∞\)-Null Controllability for the Heat Equation and its consequences for the time optimal control problem. SIAM J. Control Optim. 47, 4, 1701-1720, (2008).; Wang, G., \(L^∞\)-Null Controllability for the Heat Equation and its consequences for the time optimal control problem, SIAM J. Control Optim, 47, 4, 1701-1720 (2008) · Zbl 1165.93016 · doi:10.1137/060678191
[15] C. Zhang. An observability estimate for the heat equation from a product of two measurable sets. J. Math. Anal. Appl., 396 (1), 7-12, (2012).; Zhang, C., An observability estimate for the heat equation from a product of two measurable sets, J. Math. Anal. Appl., 396, 1, 7-12 (2012) · Zbl 1270.35251 · doi:10.1016/j.jmaa.2012.05.082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.