×

The new improved estimates of the dominant degree and disc theorem for the Schur complement of matrices. (English) Zbl 1380.65071

The properties of the Schur complement and inequality techniques are used in this paper and provide new estimates of the diagonally, \(\gamma\)-diagonally and product \(\gamma\)-diagonally dominant degree on the Schur complement of matrices theory. The improvement of the obtained results has a major influence on the scientific areas of matrix and control theory, the computational mathematics and statistics. Distributions for the eigenvalues of the Schur complements are presented, as an application of the results, while a representative numerical example demonstrates the advantages of the proposed approximations.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A06 Linear equations (linear algebraic aspects)
15A18 Eigenvalues, singular values, and eigenvectors
15A45 Miscellaneous inequalities involving matrices
15A42 Inequalities involving eigenvalues and eigenvectors
Full Text: DOI

References:

[1] DOI: 10.1016/j.laa.2009.10.021 · Zbl 1186.15016 · doi:10.1016/j.laa.2009.10.021
[2] DOI: 10.1016/j.amc.2009.12.063 · Zbl 1189.15023 · doi:10.1016/j.amc.2009.12.063
[3] DOI: 10.1016/S0024-3795(96)00406-5 · Zbl 0886.15027 · doi:10.1016/S0024-3795(96)00406-5
[4] DOI: 10.1007/b105056 · doi:10.1007/b105056
[5] DOI: 10.1016/j.laa.2007.09.008 · Zbl 1133.15020 · doi:10.1016/j.laa.2007.09.008
[6] DOI: 10.1016/j.laa.2003.09.012 · Zbl 1051.15016 · doi:10.1016/j.laa.2003.09.012
[7] DOI: 10.1016/j.laa.2004.04.012 · Zbl 1068.15004 · doi:10.1016/j.laa.2004.04.012
[8] DOI: 10.1137/040620369 · Zbl 1107.15022 · doi:10.1137/040620369
[9] DOI: 10.1186/1029-242X-2013-2 · Zbl 1279.15016 · doi:10.1186/1029-242X-2013-2
[10] DOI: 10.1186/1029-242X-2013-431 · Zbl 1291.15057 · doi:10.1186/1029-242X-2013-431
[11] DOI: 10.1016/0024-3795(82)90238-5 · Zbl 0488.15011 · doi:10.1016/0024-3795(82)90238-5
[12] Carlson D, Czech. Math. J 29 pp 246– (1979)
[13] Ikramov KD, Moscow Univ. Comput. Math. Cybernet 2 pp 91– (1989)
[14] DOI: 10.1016/0024-3795(92)90321-Z · Zbl 0765.15007 · doi:10.1016/0024-3795(92)90321-Z
[15] DOI: 10.1016/j.laa.2006.01.013 · Zbl 1106.65028 · doi:10.1016/j.laa.2006.01.013
[16] Golub GH, Matrix computations (1996)
[17] DOI: 10.1007/978-1-4612-0599-9 · doi:10.1007/978-1-4612-0599-9
[18] DOI: 10.1017/CBO9780511840371 · doi:10.1017/CBO9780511840371
[19] Berman A, Nonnegative matrices in the mathematical sciences (1979) · Zbl 0484.15016
[20] DOI: 10.1007/978-1-4757-5797-2 · doi:10.1007/978-1-4757-5797-2
[21] Xu Z, Theory and applications of H-matrices (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.