×

A finite-time recurrent neural network for solving online time-varying Sylvester matrix equation based on a new evolution formula. (English) Zbl 1380.34047

Summary: Sylvester equation is widely used to study the stability of a nonlinear system in the control field. In this paper, a finite-time Zhang neural network (FTZNN) is proposed and applied to online solution of time-varying Sylvester equation. Differing from the conventional accelerating method, the design of the proposed FTZNN model is based on a new evolution formula, which is presented and studied to accelerate the convergence speed of a recurrent neural network. Compared with the original Zhang neural network (ZNN) for time-varying Sylvester equation, the FTZNN model can converge to the theoretical time-varying solution within finite time, instead of converging exponentially with time. Besides, we can obtain the upper bound of the finite convergence time for the FTZNN model in theory. Simulation results show that the proposed FTZNN model achieves the better performance as compared with the original ZNN model for solving online time-varying Sylvester equation.

MSC:

34B45 Boundary value problems on graphs and networks for ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Castelan, E.B., Silva, V.G.: On the solution of a Sylvester equation appearing in descriptor systems control theory. Syst. Contr. Lett. 54, 109-117 (2005) · Zbl 1129.93409 · doi:10.1016/j.sysconle.2004.07.002
[2] Brahma, S., Datta, B.N.: An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating structure. J. Sound Vib. 324, 471-489 (2009) · doi:10.1016/j.jsv.2009.02.020
[3] Calvetti, D., Reichel, L.: Application of ADI iterative methods to the restoration of noisy images. SIAM J. Matrix Anal. Appl. 17, 165-186 (1996) · Zbl 0849.65101 · doi:10.1137/S0895479894273687
[4] Darouach, M.: Solution to Sylvester equation associated to linear descriptor systems. Syst. Contr. Lett. 55, 835-838 (2006) · Zbl 1100.93028 · doi:10.1016/j.sysconle.2006.04.004
[5] Bartels, R.H., Stewart, G.W.: Solution of thematrix equation \[AX+XB+C=0\] AX+XB+C=0. Commun. ACM 15, 820-826 (1972) · Zbl 1372.65121 · doi:10.1145/361573.361582
[6] Golub, G.H., Nash, S., Van Loan, C.: A Hessenberg-Schur method for the problem \[AX+XB+C=0\] AX+XB+C=0. IEEE Trans. Autom. Contr. 24, 909-913 (1979) · Zbl 0421.65022 · doi:10.1109/TAC.1979.1102170
[7] Benner, P., Li, R.C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233, 1035-1045 (2009) · Zbl 1176.65050 · doi:10.1016/j.cam.2009.08.108
[8] Flagg, G.M., Gugercin, S.: On the ADI method for the Sylvester equation and the optimal-\[H_22\] points. Appl. Numer. Math. 64, 50-58 (2013) · Zbl 1255.65087 · doi:10.1016/j.apnum.2012.10.001
[9] Bao, L., Lin, Y., Wei, Y.: A new projection method for solving large Sylvester equations. Appl. Numer. Math. 57, 521-532 (2007) · Zbl 1118.65028 · doi:10.1016/j.apnum.2006.07.005
[10] Hajariann, M.: Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J. Franklin I(350), 3328-3341 (2013) · Zbl 1293.93289 · doi:10.1016/j.jfranklin.2013.07.008
[11] Ding, F., Chen, T.: Iterative least squares solutions of coupled Sylvester matrix equations. Syst. Contr. Lett. 54, 95-107 (2015) · Zbl 1129.65306 · doi:10.1016/j.sysconle.2004.06.008
[12] Ding, F., Liu, P., Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl. Math. Comput. 197, 41-50 (2008) · Zbl 1143.65035
[13] Zhou, B., Duan, G., Li, Z.: Gradient based iterative algorithm for solving coupled equations. Syst. Contr. Lett. 58, 327-333 (2009) · Zbl 1159.93323 · doi:10.1016/j.sysconle.2008.12.004
[14] Li, S., Chen, S., Liu, B.: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process. Lett. 37, 189-205 (2013) · doi:10.1007/s11063-012-9241-1
[15] Jin, L., Zhang, Y.: Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation. IEEE Trans. Neural Netw. Learn. Syst. 26, 1525-1531 (2015) · doi:10.1109/TNNLS.2014.2342260
[16] Zhang, Y., Chen, D., Guo, D., Liao, B., Wang, Y.: On exponential convergence of nonlinear gradient dynamics system with application to square root finding. Nolinear Dyn. 79, 983-1003 (2015) · Zbl 1345.65066 · doi:10.1007/s11071-014-1716-3
[17] Peng, J., Wang, J., Wang, W.: Neural network based robust hybrid control for robotic system: an \[H-\infty \]∞ approach. Nolinear Dyn. 65, 421-431 (2011) · Zbl 1280.93058 · doi:10.1007/s11071-010-9902-4
[18] Fei, J., Ding, F.: Adaptive sliding mode control of dynamic system using RBF neural network. Nolinear Dyn. 70, 1563-1573 (2012) · doi:10.1007/s11071-012-0556-2
[19] Xiao, L., Zhang, Y.: Solving time-varying inverse kinematics problem of wheeled mobile manipulators using Zhang neural network with exponential convergence. Nolinear Dyn. 76, 1543-1559 (2014) · doi:10.1007/s11071-013-1227-7
[20] Yan, Z., Wang, J.: Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 457-469 (2014) · doi:10.1109/TNNLS.2013.2275948
[21] Zhang, Y., Jiang, D., Wang, J.: A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Trans. Neural Netw. 13, 1053-1063 (2002) · doi:10.1109/TNN.2002.1031938
[22] Zhang, Y., Ge, S.S.: Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 16, 1477-1490 (2005) · doi:10.1109/TNN.2005.857946
[23] Yi, C., Chen, Y., Lan, X.: Comparison on neural solvers for the Lyapunov matrix equation with stationary and nonstationary coefficients. Appl. Math. Model. 37, 2495-2502 (2013) · Zbl 1349.65148 · doi:10.1016/j.apm.2012.06.022
[24] Xiao, L., Zhang, Y.: From different Zhang functions to various ZNN models accelerated to finite-time convergence for time-varying linear matrix equation. Neural Process. Lett. 39, 309-326 (2014) · doi:10.1007/s11063-013-9306-9
[25] Xiao, L.: A finite-time convergent neural dynamics for online solution of time-varying linear complex matrix equation. Neurocomputing 167, 254-259 (2015) · doi:10.1016/j.neucom.2015.04.070
[26] Wu, A., Tong, L., Duan, G.: Finite iterative algorithm for solving coupled Lyapunov equations appearing in continuous-time Markov jump linear systems. Int. J. Syst. Sci. 44, 2082-2093 (2013) · Zbl 1329.60297 · doi:10.1080/00207721.2012.684900
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.