×

Bayesian calibration, validation and uncertainty quantification for predictive modelling of tumour growth: a tutorial. (English) Zbl 1372.92042

Summary: In this work, we present a pedagogical tumour growth example, in which we apply calibration and validation techniques to an uncertain, Gompertzian model of tumour spheroid growth. The key contribution of this article is the discussion and application of these methods (that are not commonly employed in the field of cancer modelling) in the context of a simple model, whose deterministic analogue is widely known within the community. In the course of the example, we calibrate the model against experimental data that are subject to measurement errors, and then validate the resulting uncertain model predictions. We then analyse the sensitivity of the model predictions to the underlying measurement model. Finally, we propose an elementary learning approach for tuning a threshold parameter in the validation procedure in order to maximize predictive accuracy of our validated model.

MSC:

92C50 Medical applications (general)
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

BayesDA

References:

[1] Achilleos A, Loizides C, Stylianopoulos T, Mitsis GD (2013) Multi-process dynamic modeling of tumor-specific evolution. In: 13th IEEE conference on bioinformatics and bioengineering, pp. 1-4. doi:10.1109/BIBE.2013.6701614 · Zbl 1091.65006
[2] Achilleos A, Loizides C, Hadjiandreou M, Stylianopoulos T, Mitsis GD (2014) Multiprocess dynamic modeling of tumor evolution with Bayesian tumor-specific predictions. Ann Biomed Eng 42(5):1095-1111. doi:10.1007/s10439-014-0975-y · doi:10.1007/s10439-014-0975-y
[3] Aguilar O, Allmaras M, Bangerth W, Tenorio L (2015) Statistics of parameter estimates: a concrete example. SIAM Rev 57(1):131-149 · Zbl 1381.62053 · doi:10.1137/130929230
[4] Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Caski F (eds) Proceedings of the second international symposium on information theory. Akademiai Kiado, Budapest · Zbl 0283.62006
[5] Allmaras M, Bangerth W, Linhart JM, Polanco J, Wang F, Wang K, Webster J, Zedler S (2013) Estimating parameters in physical models through Bayesian inversion: a complete example. SIAM Rev 55(1):149-167 · Zbl 1260.74003 · doi:10.1137/100788604
[6] Andrieu C, Thoms J (2008) A tutorial on adaptive MCMC. Stat Comput 18(4):343-373. doi:10.1007/s11222-008-9110-y · doi:10.1007/s11222-008-9110-y
[7] Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40-79. doi:10.1214/09-SS054 · Zbl 1190.62080 · doi:10.1214/09-SS054
[8] ASME (2006) ASME V&V 10-2006: guide for verification and validation in computational solid mechanics. American Society of Mechanical Engineers, New York
[9] ASME (2009) ASME V&V 20-2009: standard for verification and validation in computational fluid dynamics. American Society of Mechanical Engineers, New York · Zbl 0033.28807
[10] ASME (2012) ASME V&V 10.1-2012: an illustration of the concepts of verification and validation in computational solid mechanics. American Society of Mechanical Engineers, New York · Zbl 0042.14403
[11] Babuška I, Tempone R, Zouraris GE (2004) Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J Numer Anal 42(2):800-825 · Zbl 1080.65003 · doi:10.1137/S0036142902418680
[12] Babuška I, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3):1005-1034 · Zbl 1151.65008 · doi:10.1137/050645142
[13] Babuška I, Nobile F, Tempone R (2008) A systematic approach to model validation based on Bayesian updates and prediction related rejection criteria. Comput Methods Appl Mech Eng 197:2517-2539 · Zbl 1139.74012 · doi:10.1016/j.cma.2007.08.031
[14] Baldock AL, Rockne RC, Boone AD, Neal ML, Hawkins-Daarud A, Corwin DM, Bridge CA, Guyman LA, Trister AD, Mrugala MM, Rockhill JK, Swanson KR (2013) From patient-specific mathematical neuro-oncology to precision medicine. Front Oncol 3:62 · doi:10.3389/fonc.2013.00062
[15] Bayarri MJ, Berger J, Paulo R, Sacks J, Cafeo JA, Cavendish JC, Lin C, Tu J (2007) A framework for validation of computer models. Technometrics 49:138-154 · doi:10.1198/004017007000000092
[16] Bellman R, Åström KJ (1970) On structural identifiability. Math Biosci 7(3):329-339. ISSN 0025-5564. doi:10.1016/0025-5564(70)90132-X · Zbl 0042.38403
[17] Berger, JO; Kadane, JB (ed.), The robust Bayesian viewpoint (with discussion), 63-144 (1984), Amsterdam
[18] Chen W, Wong C, Vosburgh E, Levine AJ, Foran DJ, Xu EY (2014) High-throughput image analysis of tumor spheroids: a user-friendly software application to measure the size of spheroids automatically and accurately. J Vis Exp (89). doi:10.3791/51639. http://www.jove.com/video/51639/high-throughput-image-analysis-tumor-spheroids-user-friendly-software
[19] Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings algorithm. Am Stat 49(4):327-335
[20] Cobelli C, DiStefano JJ (1980) Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am J Physiol Regul Integr Comp Physiol 239(1):R7-R24, ISSN 0363-6119 · Zbl 1151.65008
[21] Connor AJ (2016) Calibration, validation and uncertainty quantification. doi:10.6084/m9.figshare.3406876. Supporting data and code
[22] Gammon K (2012) Mathematical modelling: forecasting cancer. Nature 491:66-67 · doi:10.1038/491S66a
[23] Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2014a) Bayesian data analysis, 3rd edn. CRC Press, Boca Raton · Zbl 1279.62004
[24] Gelman A, Hwang J, Vehtari A (2014b) Understanding predictive information criteria for Bayesian models. Stat Comput 24(6):997-1016. doi:10.1007/s11222-013-9416-2 · Zbl 1332.62090 · doi:10.1007/s11222-013-9416-2
[25] Ghanem R (1999) Stochastic finite elements with multiple random non-Gaussian properties. ASCE J Eng Math 125(1):26-40 · doi:10.1061/(ASCE)0733-9399(1999)125:1(26)
[26] Ghanem R, Red-Horse J (1999) Propogation of probabilistic uncertainity in complex physical systems using a stochastic finite element approach. Phys D 133:137-144 · Zbl 1194.74400 · doi:10.1016/S0167-2789(99)00102-5
[27] Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, Berlin · Zbl 0722.73080 · doi:10.1007/978-1-4612-3094-6
[28] Gilks WR, Richardson S, Spiegelhalter DJ (eds) (1996) Practical Markov chain Monte Carlo. Chapman and Hall, London · Zbl 0845.60072
[29] Gompertz G (1825) On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513-585 · doi:10.1098/rstl.1825.0026
[30] Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109 · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[31] Hawkins-Daarud A, Prudhomme S, van der Zee KG, Oden JT (2013) Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumour growth. J Math Biol 67:1457-1485 · Zbl 1280.35163 · doi:10.1007/s00285-012-0595-9
[32] Higdon D, Kennedy M, Cavendish JC, Cafeo JA, Ryne RD (2005) Combining field data and computer simulations for calibration and prediction. SIAM J Sci Comput 2(26):448-466 · Zbl 1072.62018
[33] Insua DR, Ruggeri F (eds) (2000) Robust Bayesian analysis, volume 152 of lecture notes in statistics. Springer, New York · Zbl 0958.00015
[34] Kaipio J, Somersalo E (2006) Statistical and computational inverse problems. Springer, New York · Zbl 1068.65022
[35] Kennedy MC, O’Hagan A (2001) Bayesian calibration of computer models. J R Stat Soc Ser B (Stat Methodol) 63(4):425-464. doi:10.1111/1467-9868.00294 · Zbl 1007.62021 · doi:10.1111/1467-9868.00294
[36] Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79-86. doi:10.1214/aoms/1177729694 · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[37] Laird AK (1964) Dynamics of tumor growth. Br J Cancer 18:490-502 · doi:10.1038/bjc.1964.55
[38] Lopes HF, Tobias JL (2011) Confronting prior convictions: on issues of prior sensitivity and likelihood robustness in Bayesian analysis. Annu Rev Econ 3:107-131. doi:10.1146/annurev-economics-111809-125134 · doi:10.1146/annurev-economics-111809-125134
[39] Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68-78 · Zbl 0042.14403 · doi:10.1080/01621459.1951.10500769
[40] Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335-341 · Zbl 0033.28807 · doi:10.1080/01621459.1949.10483310
[41] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087-1092 · Zbl 1431.65006 · doi:10.1063/1.1699114
[42] Miller LH (1956) Table of percentage points of Kolmogorov statistics. J Am Stat Assoc 51(273):111-121 · Zbl 0071.13301 · doi:10.1080/01621459.1956.10501314
[43] Najm HN (2009) Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu Rev Fluid Mech 41:35-52 · Zbl 1168.76041 · doi:10.1146/annurev.fluid.010908.165248
[44] Nobile F, Tempone R, Webster C (2008a) A sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 46(5):2309-2345 · Zbl 1176.65137 · doi:10.1137/060663660
[45] Nobile F, Tempone R, Webster C (2008b) An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 46(5):2411-2442 · Zbl 1176.65007 · doi:10.1137/070680540
[46] Norris JR (1998) Markov chains. Number no. 2008 in Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press. ISBN 9780521633963 · Zbl 0938.60058
[47] NRC (2012) Assessing the reliability of complex models: mathematical and statistical foundations of verification, validation, and uncertainty quantification. The National Academies Press. ISBN 9780309256346 · Zbl 0042.14403
[48] Oberkampf WL, Barone MF (2006) Measures of agreement between computation and experiment: validation metrics. J Comput Phys 217(1):5-36. doi:10.1016/j.jcp.2006.03.037 · Zbl 1147.76606 · doi:10.1016/j.jcp.2006.03.037
[49] Oberkampf WL, Roy CJ (2010) Verification and validation in scientific computing. Cambridge University Press, Cambridge · Zbl 1211.68499 · doi:10.1017/CBO9780511760396
[50] Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, validation, and predictive capability in computational engineering and physics. Appl Mech Rev 57(5):345-384. doi:10.1115/1.1767847 · doi:10.1115/1.1767847
[51] Oden JT, Moser R, Ghattas O (2010a) Computer predictions with quantified uncertainty, part i. SIAM News 43(9):1-3
[52] Oden JT, Moser R, Ghattas O (2010b) Computer predictions with quantified uncertainty, part ii. SIAM News 43(10):1-3
[53] Pathmanathan P, Gray RA (2013) Ensuring reliability of safety-critical clinical applications of computational cardiac models. Front Physiol. doi:10.3389/fphys.2013.00358 · doi:10.3389/fphys.2013.00358
[54] Pericchi LR, Peréz ME (1994) Posterior robustness with more than one sampling model. J Stat Plan Inference 40:279-294 · Zbl 0925.62106 · doi:10.1016/0378-3758(94)90126-0
[55] Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923-1929. doi:10.1093/bioinformatics/btp358 · doi:10.1093/bioinformatics/btp358
[56] Roache PJ (2009) Fundamentals of verification and validation, 2nd edn. Hermosa Publishers, New Mexico
[57] Savage N (2012) Modelling: computing cancer. Nature 491:62-63 · doi:10.1038/491S62a
[58] Schervish MJ (1995) Theory of statistics. Springer series in statistics. Springer, New York · Zbl 0834.62002
[59] Simpson DP, Rue H, Martins TG, Riebler A, Sørbye SH (2014) Penalising model component complexity: a principled, practical approach to constructing priors. In arXiv preprint arXiv:1403.4630 [stat.ME] · Zbl 1442.62060
[60] Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc B 64(4):583-639 · Zbl 1067.62010 · doi:10.1111/1467-9868.00353
[61] Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM, Philadelphia · Zbl 1074.65013 · doi:10.1137/1.9780898717921
[62] Tatang MA, Pan W, Prinn RG, McRae GJ (1997) An efficient method for parametric uncertainity analysis of numerical geophysical models. J Geophys Res 102(D18):21925-21932 · doi:10.1029/97JD01654
[63] Watanabe S (2010) Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res 11:3571-3594 · Zbl 1242.62024
[64] Xiu D, Hesthaven JS (2005) High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27(3):1118-1139 · Zbl 1091.65006 · doi:10.1137/040615201
[65] Xiu D, Karniadakis GE (2002) Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput Methods Appl Mech Eng 191:4927-4948 · Zbl 1016.65001 · doi:10.1016/S0045-7825(02)00421-8
[66] Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187:137-167 · Zbl 1047.76111 · doi:10.1016/S0021-9991(03)00092-5
[67] Yankeelov TE, Atuegwu N, Hormuth D, WeisJA, Barnes SL, Miga MI, Rericha EC, Quaranta V (2013) Clinically relevant modeling of tumor growth and treatment response. Sci Transl Med 5(187). ISSN 1946-6234. doi:10.1126/scitranslmed.3005686 · Zbl 1176.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.