×

Path-space information bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics. (English) Zbl 1371.65004

Summary: Uncertainty quantification is a primary challenge for reliable modeling and simulation of complex stochastic dynamics. Such problems are typically plagued by incomplete information that may enter as uncertainty in the model parameters, or even in the model itself. Furthermore, due to their dynamic nature, we need to assess the impact of these uncertainties on both finite and long-time behavior of the stochastic models and derive corresponding uncertainty bounds for observables of interest. A special class of such challenges is parametric uncertainties in the model, in particular sensitivity analysis along with the corresponding sensitivity bounds for stochastic dynamics. Moreover, sensitivity analysis can be further complicated in models with a high number of parameters that render straightforward approaches, such as gradient methods, impractical. In this paper, we derive uncertainty and sensitivity bounds for path-space observables of stochastic dynamics in terms of new goal-oriented divergences; the latter incorporate both observables and information theory objects such as the relative entropy rate. These bounds are tight, depend on the variance of the particular observable, and are computable through Monte Carlo simulation. In the case of sensitivity analysis, the derived sensitivity bounds rely on the path-space Fisher information matrix, and hence they depend only on local dynamics and are gradient-free. These features allow for computationally efficient implementation in systems with a high number of parameters, e.g., complex reaction networks and molecular simulations.

MSC:

65C05 Monte Carlo methods
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
60J25 Continuous-time Markov processes on general state spaces
62B10 Statistical aspects of information-theoretic topics

References:

[1] D. F. Anderson, {\it An efficient finite difference method for parameter sensitivities of continuous time Markov chains}, SIAM J. Numer. Anal., 50 (2012), pp. 2237-2258. · Zbl 1264.60050
[2] G. Arampatzis and M. Katsoulakis, {\it Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations}, J. Chem. Phys., 12 (2014), 124108. · Zbl 1320.65004
[3] G. Arampatzis and M. A. Katsoulakis, {\it Numerical estimation of integrated autocorrelation time}, in preparation.
[4] G. Arampatzis, M. A. Katsoulakis, and Y. Pantazis, {\it Accelerated sensitivity analysis in high-dimensional stochastic reaction networks}, PLOS ONE, 10 (2015), e0130825. · Zbl 1371.62004
[5] G. Casella and R. Berger, {\it Statistical Inference}, Duxbury Advanced Series in Statistics and Decision Sciences, Thomson Learning, 2002.
[6] K. Chowdhary and P. Dupuis, {\it Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification}, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 635-662. · Zbl 1266.65009
[7] A. Dembo and O. Zeitouni, {\it Large Deviations Techniques and Applications}, Appl. Math. (N.Y.) 38, Springer, New York, 1998. · Zbl 0896.60013
[8] J. DiStefano III, {\it Dynamic Systems Biology Modeling and Simulation}, Elsevier, 2013.
[9] P. Dupuis and R. Ellis, {\it A Weak Convergence Approach to the Theory of Large Deviations}, Wiley Series in Probability and Statistics, 1997. · Zbl 0904.60001
[10] C. Gardiner, {\it Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences}, Springer, 1985. · Zbl 0934.60003
[11] P. Glynn, {\it Likelihood ratio gradient estimation for stochastic systems}, Comm. ACM, 33 (1990), pp. 75-84.
[12] M. Hairer and A. J. Majda, {\it A simple framework to justify linear response theory}, Nonlinearity, 23 (2010), pp. 909-922. · Zbl 1186.82006
[13] I. Karatzas and S. Shreve, {\it Brownian Motion and Stochastic Calculus}, Springer, 1991. · Zbl 0734.60060
[14] M. A. Katsoulakis and P. Plechac, {\it Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems}, J. Chem. Phys., 139 (2013), 074115.
[15] S. M. Kay, {\it Fundamentals of Statistical Signal Processing: Estimation Theory}, Prentice-Hall, Englewood Cliffs, NJ, 1993. · Zbl 0803.62002
[16] D. Kim, B. Debusschere, and H. Najm, {\it Spectral methods for parametric sensitivity in stochastic dynamical systems}, Biophys. J., 92 (2007), pp. 379-393.
[17] P. E. Kloeden and E. Platen, {\it Numerical Solution of Stochastic Differential Equations}, 3rd ed., Springer-Verlag, 1999. · Zbl 1216.60052
[18] M. Komorowski, M. J. Costa, D. A. Rand, and M. P. H. Stumpf, {\it Sensitivity, robustness, and identifiability in stochastic chemical kinetics models}, Proc. Natl. Acad. Sci. USA, 108 (2011), pp. 8645-8650.
[19] E. Lehmann and G. Casella, {\it Theory of Point Estimation}, 2nd ed., Springer, 1998. · Zbl 0916.62017
[20] J. Li and D. Xiu, {\it Computation of failure probability subject to epistemic uncertainty}, SIAM J. Sci. Comput., 34 (2012), pp. A2946-A2964. · Zbl 1262.65018
[21] N. Limnios and G. Oprisan, {\it Semi-Markov Processes and Reliability}, Springer, 2001. · Zbl 0990.60004
[22] J. S. Liu, {\it Monte Carlo Strategies in Scientific Computing}, Springer Series in Statistics, Springer-Verlag, New York, 2001. · Zbl 0991.65001
[23] C. Maes, F. Redig, and A. V. Moffaert, {\it On the definition of entropy production, via examples}, J. Math. Phys., 41 (2000), pp. 1528-1553. · Zbl 0977.82025
[24] A. J. Majda and B. Gershgorin, {\it Quantifying uncertainty in climate change science through empirical information theory}, Proc. Natl. Acad. Sci. USA, 107 (2010), pp. 14958-14963.
[25] J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov, {\it Convergence of numerical time-averaging and stationary measures via Poisson equations}, SIAM J. Numer. Anal., 48 (2010), pp. 552-577. · Zbl 1217.65014
[26] F. Nielsen and V. Garcia, {\it Statistical Exponential Families: A Digest with Flash Cards}, preprint, arXiv:0911.4863, 2009.
[27] B. Oksendal, {\it Stochastic Differential Equations: An Introduction with Applications}, Springer-Verlag, 2000.
[28] Y. Pantazis and M. Katsoulakis, {\it A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics}, J. Chem. Phys., 138 (2013), 054115.
[29] Y. Pantazis, M. Katsoulakis, and D. Vlachos, {\it Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory}, BMC Bioinform., 14 (2013), 311.
[30] S. Plyasunov and A. P. Arkin, {\it Efficient stochastic sensitivity analysis of discrete event systems}, J. Comput. Phys., 221 (2007), pp. 724-738. · Zbl 1107.65301
[31] H. Qian, {\it Open-system nonequilibrium steady-state: Statistical thermodynamics, fluctuations and chemical oscillations}, J. Phys. Chem., 110 (2006), pp. 15063-15074.
[32] M. Rathinam, P. W. Sheppard, and M. Khammash, {\it Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks}, J. Chem. Phys., 132 (2010), 034103.
[33] C. E. Shannon, {\it A mathematical theory of communication}, Bell System Tech. J., 27 (1948), pp. 379-423. · Zbl 1154.94303
[34] P. Sheppard, M. Rathinam, and M. Khammash, {\it A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems}, J. Chem. Phys., 136 (2012), 034115.
[35] A. D. Sokal, {\it Monte Carlo methods in statistical mechanics: Foundations and new algorithms}, in Lectures at the Cargèse Summer School, 1996.
[36] A. Tsybakov, {\it Introduction to Nonparametric Estimation}, Springer, 2008. · Zbl 1176.62032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.