×

LRS Bianchi type I magnetized cosmological model with perfect fluid and with quintessence, Chaplygin gas dark energy in bimetric theory of gravitation. (English) Zbl 1366.83074

Summary: We studied the LRS Bianchi type I cosmological models with perfect fluid, quintessence and standard Chaplygin gas dark energy in the presence as well as in the absence of magnetic field \(K\), in bimetric theory of gravitation. It is realized that the magnetic field controlled the whole behavior of the models. In the absence of magnetic field, these models exists and the model never exists in the presence of magnetic field. The geometry of quintessence model for \(\omega_q=-1/3\) and standard Chaplygin gas model coincide and their physical behavior are same in the absence of magnetic field. Some geometrical and physical properties of each of the model are explored. The model have also been studied in regard with the singularities and it is pointed out that the model is singular in the presence of magnetic field and nonsingular in the absence of magnetic field.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology
Full Text: DOI

References:

[1] , (Ade, P. A. R.et al.), Astron. Astrophys.571 (2014) A1.
[2] , (Ade, P. A. R.et al.), Astron. Astrophys.571 (2014) A16.
[3] , (Ade, P. A. R.et al.), Astron. Astrophys.571 (2014) A22.
[4] , (Ade, P. A. R.et al.), Astron. Astrophys.571 (2014) A24.
[5] Riess, A. G.et al., Astron. J.116 (1998) 1009.
[6] Perlmutter, S.et al., Astrophys. J.517 (1999) 565.
[7] Bahcall, N. A.et al., Science284 (1999) 1481.
[8] Spergel, D. N.et al., Astrophys. J. Suppl.148 (2003) 175.
[9] Tegmark, M.et al., Phys. Rev. D74 (2006) 1.
[10] Bennet, C. L.et al., Astrophys. J. Suppl. Ser.148 (2003) 1.
[11] Hinshaw, G.et al., Astrophys. J. Suppl. Ser.180 (2009) 225.
[12] Nolta, M. R.et al., Astrophys. J. Suppl.180 (2009) 296.
[13] Hinshaw, G.et al., Asrophys. J. Suppl.208 (2013) 19.
[14] Anderson, L.et al., Mon. Not. R. Astron. Soc.427 (2013) 343.
[15] Ratra, B. and Peebles, J., Phys. Rev. D37 (1988) 321.
[16] Wetterich, C., Nucl. Phys. B302 (1988) 668.
[17] Caldwell, R. R., Phys. Lett. B545 (2002) 23.
[18] Wei, Y. H. and Tian, Y., Class. Quantum. Grav.21 (2004) 5347. · Zbl 1067.83571
[19] Elizalde, E., Nojiri, S. and Odinstov, S. D., Phys. Rev. D70 (2004) 043539.
[20] Nojiri, S., Oddinstov, S. D. and Tsujikawa, S., Phys. Rev. D71 (2005) 063004.
[21] Padmanabhan, T., Phys. Rev. D66 (2002) 021301.
[22] Sen, A., J. High Energy Phys.04 (2002) 048.
[23] Kamenshchik, A., Moschella, U. and Pasquier, V., Phys. Lett. B511 (2001) 265. · Zbl 0969.83556
[24] Katore, S. D., Kapse, D. V. and Tayade, G. B., Int. J. Theor. Phys.50 (2011) 3299. · Zbl 1242.83127
[25] Borkar, M. S., Charjan, S. S. and Lepse, V. V., Int. Org. Sci. Res. J. Math.10 (2014) 62.
[26] Copeland, E. J., Sami, M. and Tsujikawa, S., Int. J. Mod. Phys. D15 (2006) 1753. · Zbl 1203.83061
[27] Saha, B., Chin. J. Phys.43 (2005) 1035.
[28] Singh, T. and Chaubey, R., Astrophys. Space Sci.319 (2009) 149. · Zbl 1172.83355
[29] Dev, A., Alcaniz, J. S. and Jain, D., Phys. Rev. D67 (2003) 023515.
[30] Setare, M. R., Int. J. Mod. Phys. D18 (2009) 419. · Zbl 1173.83319
[31] Bento, M. C., Bertolami, O. and Sen, A., Phys. Rev. D66 (2002) 043507.
[32] Guo, Z. K. and Zhang, Y. Z., Phys. Lett. B645 (2007) 326.
[33] Abdusattar and Prajapati, S. R., Astrophys. Space Sci.332 (2011) 455. · Zbl 1237.83040
[34] Shen, M. and Zhao, L., Astrophys. Space Sci.337 (2012) 753. · Zbl 1238.83020
[35] Melvin, M. A., Ann. New York Acad. Sci.262 (1971) 253.
[36] Rosen, N., Gen. Relativ. Gravit.4 (1973) 435. · Zbl 0977.83501
[37] Rosen, N., Gen. Relativ. Gravit.6 (1975) 259.
[38] Karade, T. M., Indian J. Pure Appl. Math.11 (1980) 1202. · Zbl 0446.53046
[39] Isrelit, M., Gen. Relativ. Gravit.13 (1981) 681.
[40] Reddy, D. R. K. and Venkateswara Rao, N., Astrophys. Space Sci.257 (1998) 293. · Zbl 1009.83518
[41] Katore, S. D. and Rane, R. S., Pramana J. Phys.67 (2006) 237.
[42] Khadekar, G. S. and Tade, S. D., Astrophys. Space Sci.310 (2007) 47.
[43] Borkar, M. S. and Charjan, S. S., Int. J. Appl. Math.22 (2009) 445. · Zbl 1175.83017
[44] Borkar, M. S. and Charjan, S. S., J. Ind. Acad. Math.32 (2010) 147. · Zbl 1246.83037
[45] Borkar, M. S. and Charjan, S. S., Appl. Appl. Math.5 (2010) 96. · Zbl 1196.83029
[46] Gaikwad, N. P., Borkar, M. S. and Charjan, S. S., Chin. Phys. Lett.28 (2011) 089803.
[47] Borkar, M. S., Charjan, S. S. and Lepse, V. V., Int. Org. Sci. Res. J. Math.10 (2014) 62.
[48] Borkar, M. S. and Ameen, A., Int. J. Mod. Phys. D24 (2015) 1550019. · Zbl 1311.83038
[49] Finkelstein, D., Phys. Rev.110 (1958) 965. · Zbl 0080.21701
[50] Kruskal, M. D., Phys. Rev.119 (1960) 1743. · Zbl 0098.19001
[51] Penrose, R., Phys. Rev. Lett.14 (1965) 57. · Zbl 0125.21206
[52] Karade, T. M., Acta Phys. Acad. Sci. Hung.39 (1975) 227.
[53] Borkar, M. S. and Karade, T. M., Ind. J. Pure Appl. Math.34 (2003) 1219. · Zbl 1057.83519
[54] Borkar, M. S. and Gayakwad, P. V., Appl. Appl. Math.9 (2014) 260. · Zbl 1300.83011
[55] Singh, P., Phys. Rev. D85 (2012) 104011.
[56] Singh, P., Bull. Astron. Soc. Ind.42 (2014) 121.
[57] Singh, P., Int. J. Mod. Phys. D25 (2016) 1642001. · Zbl 1344.83068
[58] Lichnerowicz, A., Relativistic Hydrodynamics and Magneto Hydrodynamics, Vol. 13 (Benjamin, New York, 1967). · Zbl 0193.55401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.