×

Completeness on the stability criterion of fractional order LTI systems. (English) Zbl 1365.34021

From the past few decades, researchers are applying the concept of fractional order system to study various problems in engineering. There are many generalizations, this work is about the stability of a fractional LTI system. The authors use the definition of fractional order positive definite to derive a set of equivalent stability criteria. The results are given in terms of linear matrix inequalities. Furthermore, the authors discuss the properties of these criteria such as completeness, singularity, conservatism, etc. At the end, a pictorial illustration is given to demonstrate the effectiveness of the obtained results.
Reviewer: Syed Abbas (Mandi)

MSC:

34A08 Fractional ordinary differential equations
34D10 Perturbations of ordinary differential equations
93D09 Robust stability
93D21 Adaptive or robust stabilization
34D20 Stability of solutions to ordinary differential equations
34A30 Linear ordinary differential equations and systems
Full Text: DOI

References:

[1] H.S. Ahn and Y.Q. Chen, Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica44, No 11 (2008), 2985-2988; .; Ahn, H. S.; Chen, Y. Q., Necessary and sufficient stability condition of fractional-order interval linear systems, Automatica, 44, 11, 2985-2988 (2008) · Zbl 1152.93455 · doi:10.1016/j.automatica.2008.07.003
[2] R. Caponetto, S. Graziani, V. Tomasello, and A. Pisano, Identification and fractional super-twisting robust control of IPMC actuators. Fract. Calc. Appl. Anal. 18, No 6 (2015), 1358-1378; <ext-link ext-link-type=“uri” xlink.href=“https://www.degruyter.com/view/j fca.2015.18.issue-6/issue-files/fca.2015.18.issue-6.xml”>https://www.degruyter.com/view/j fca.2015.18.issue-6/issue-files/fca.2015.18.issue-6.xml.; Caponetto, R.; Graziani, S.; Tomasello, V.; Pisano, A., Identification and fractional super-twisting robust control of IPMC actuators, Fract. Calc. Appl. Anal., 18, 6, 1358-1378 (2015) · Zbl 1328.93134 · doi:10.1515/fca-2015-0079;
[3] L.P. Chen, Y.G. He, Y. Chai, and R.C. Wu, New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dynam. 75, No 4 (2014), 633-641; .; Chen, L. P.; He, Y. G.; Chai, Y.; Wu, R. C., New results on stability and stabilization of a class of nonlinear fractional-order systems, Nonlinear Dynam., 75, 4, 633-641 (2014) · Zbl 1283.93138 · doi:10.1007/s11071-013-1091-5
[4] M. Chilali, P. Gahinet, and P. Apkarian, Robust pole placement in LMI regions. IEEE Trans. Autom. Control44, No 12 (1999), 2257-2270; .; Chilali, M.; Gahinet, P.; Apkarian, P., Robust pole placement in LMI regions, IEEE Trans. Autom. Control, 44, 12, 2257-2270 (1999) · Zbl 1136.93352 · doi:10.1109/9.811208
[5] M.A. Duarte-Mermoud, N. Aguila-Camacho, J.A. Gallegos, and R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear. Sci. 22, No 1 (2015), 650-659; .; Duarte-Mermoud, M. A.; Aguila-Camacho, N.; Gallegos, J. A.; Castro-Linares, and R., Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear. Sci., 22, 1, 650-659 (2015) · Zbl 1333.34007 · doi:10.1016/j.cnsns.2014.10.008
[6] M.O. Efe, Fractional order systems in industrial automation-a survey. IEEE Trans. Ind. Inform. 7, No 4 (2011), 582-591; .; Efe, M. O., Fractional order systems in industrial automation-a survey, IEEE Trans. Ind. Inform., 7, 4, 582-591 (2011) · doi:10.1109/TII.2011.2166775
[7] C. Farges, M. Moze, and J. Sabatier, Pseudo-state feedback stabilization of commensurate fractional order systems. Automatica46, No 10 (2010), 1730-1734; .; Farges, C.; Moze, M.; Sabatier, J., Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica, 46, 10, 1730-1734 (2010) · Zbl 1204.93094 · doi:10.1016/j.automatica.2010.06.038
[8] T.J. Freeborn, B. Maundy, and A.S. Elwakil, Fractional-order models of supercapacitors, batteries and fuel cells: A survey. Renew. Sust. Energ. Rev. 4, No 3 (2015), 1-7; .; Freeborn, T. J.; Maundy, B.; Elwakil, A. S., Fractional-order models of supercapacitors, batteries and fuel cells: A survey, Renew. Sust. Energ. Rev., 4, 3, 1-7 (2015) · Zbl 1394.93322 · doi:10.1007/s40243-015-0052-y
[9] C. Ionescu and C. Muresan, Sliding mode control for a class of subsystems with fractional order varying trajectory dynamics. Fract. Calc. Appl. Anal. 18, No 6 (2015), 1441-1451; .; Ionescu, C.; Muresan, C., Sliding mode control for a class of subsystems with fractional order varying trajectory dynamics, Fract. Calc. Appl. Anal., 18, 6, 1441-1451 (2015) · Zbl 1328.93123 · doi:10.1515/fca-2015-0083;
[10] Y. Li, Y.Q. Chen, and I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica45, No 8 (2009), 1965-1969; .; Li, Y.; Chen, Y. Q.; Podlubny, I., Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 8, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[11] S. Liang, C. Peng, and Y. Wang, Improved linear matrix inequalities stability criteria for fractional order systems and robust stabilization synthesis: The 0 < α < 1 case. Contl. Theor. Appl. 30, No 4 (2013), 531-535; .; Liang, S.; Peng, C.; Wang, Y., Improved linear matrix inequalities stability criteria for fractional order systems and robust stabilization synthesis: The 0 < α < 1 case, Contl. Theor. Appl., 30, 4, 531-535 (2013) · doi:10.7641/CTA.2013.20674
[12] J.G. Lu and Y.Q. Chen, Robust stability and stabilization of fractional-order interval systems with the fractional order α: The 0 < α < 1 case. IEEE Trans. Autom. Control55, No 1 (2010), 152-158; .; Lu, J. G.; Chen, Y. Q., Robust stability and stabilization of fractional-order interval systems with the fractional order α: The 0 < α < 1 case, IEEE Trans. Autom. Control, 55, 1, 152-158 (2010) · Zbl 1368.93506 · doi:10.1109/TAC.2009.2033738
[13] J.G. Lu and Y.Q. Chen, Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties. Fract. Calc. Appl. Anal. 16, No 1 (2013), 142-157; .; Lu, J. G.; Chen, Y. Q., Stability and stabilization of fractional-order linear systems with convex polytopic uncertainties, Fract. Calc. Appl. Anal., 16, 1, 142-157 (2013) · Zbl 1312.93081 · doi:10.2478/s13540-013-0010-2;
[14] J.A.T. Machado, V. Kiryakova, and F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear. Sci. 16, No 3 (2011), 1140-1153; .; Machado, J. A.T.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear. Sci., 16, 3, 1140-1153 (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[15] B.B. Mandelbrot, A class of long-tailed probability distributions and the empirical distribution of city sizes. In: F. Massarik, P. Ratoosh (Eds.), Mathematical Explanations in Behavioral Science, Homewood Editions, New York (1965), 322-332.; Mandelbrot, B. B.; Massarik, F.; Ratoosh, P., Mathematical Explanations in Behavioral Science, 322-332 (1965)
[16] D. Matignon, Stability results for fractional differential equations with applications to control processing. In: IMACS Multiconference: Computational Engineering in Systems Applications, Lille, France (1996), 963-968.; Matignon, D., IMACS Multiconference: Computational Engineering in Systems Applications, 963-968 (1996)
[17] M. Moze, J. Sabatier, and A. Oustaloup, LMI tools for stability analysis of fractional systems. In: 5th Internat. Conference on Multibody Systems, Nonlinear Dynamics, and Control, Long Beach, USA (2005), 1611-1619; .; Moze, M.; Sabatier, J.; Oustaloup, A., 5th Internat. Conference on Multibody Systems, Nonlinear Dynamics, and Control, 1611-1619 (2005) · Zbl 1125.93051 · doi:10.1115/DETC2005-85182
[18] A. Oustaloup, B. Mathieu, and P. Lanusse, The CRONE control of resonant plants: application to a flexible transmission. Eur. J. Control1, No 2 (1995), 113-121; .; Oustaloup, A.; Mathieu, B.; Lanusse, P., The CRONE control of resonant plants: application to a flexible transmission, Eur. J. Control, 1, 2, 113-121 (1995) · Zbl 1423.93106 · doi:10.1016/S0947-3580(95)70014-0
[19] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Eqnations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999).; Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Eqnations, to Methods of Their Solution and Some of Their Applications (1999) · Zbl 0924.34008
[20] I. Podlubny, Fractional-order systems and \(PI^λ D^μ\) controllers. IEEE Trans. Autom. Control44, No 1 (1999), 208-214; .; Podlubny, I., Fractional-order systems and \(PI^λ D^μ\) controllers, IEEE Trans. Autom. Control, 44, 1, 208-214 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[21] J. Sabatier, M. Moze, and C. Farges, On stability of fractional order systems. In: Third IFAC Workshop on Fractional Differentiation and its Applications, Ankara, Turkey (2008), hal-00322949.; Sabatier, J.; Moze, M.; Farges, C., On stability of fractional order systems, Third IFAC Workshop on Fractional Differentiation and its Applications (2008) · Zbl 1189.34020
[22] M.S. Tavazoei, Time response analysis of fractional-order control systems: A survey on recent results. Fract. Calc. Appl. Anal. 17, No 2 (2014), 440-461; ; .; Tavazoei, M. S., Time response analysis of fractional-order control systems: A survey on recent results, Fract. Calc. Appl. Anal., 17, 2, 440-461 (2014) · Zbl 1303.93125 · doi:10.2478/s13540-014-0179-z
[23] M.S. Tavazoei and M. Haeri, A note on the stability of fractional order systems. Math. Comput. Simulat. 79, No 5 (2009), 1566-1576; .; Tavazoei, M. S.; Haeri, M., A note on the stability of fractional order systems, Math. Comput. Simulat., 79, 5, 1566-1576 (2009) · Zbl 1168.34036 · doi:10.1016/j.matcom.2008.07.003
[24] J.C. Trigeassou, N. Maamri, J. Sabatier, and A. Oustaloup, A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, No 3 (2011), 437-445; .; Trigeassou, J. C.; Maamri, N.; Sabatier, J.; Oustaloup, A., A Lyapunov approach to the stability of fractional differential equations, Signal Process, 91, 3, 437-445 (2011) · Zbl 1203.94059 · doi:10.1016/j.sigpro.2010.04.024
[25] S. Victor and P. Melchior, Improvements on flat output characterization for fractional systems. Fract. Calc. Appl. Anal. 18, No 1 (2015), 238-260; ; .; Victor, S.; Melchior, P., Improvements on flat output characterization for fractional systems, Fract. Calc. Appl. Anal., 18, 1, 238-260 (2015) · Zbl 1350.93031 · doi:10.1515/fca-2015-0016
[26] Y.H. Wei, W.P. Tse, Z. Yao, and Y. Wang, Adaptive backstepping output feedback control for a class of nonlinear fractional order systems. Nonlinear Dynam. 86, No 2 (2016), 1047-1056; .; Wei, Y. H.; Tse, W. P.; Yao, Z.; Wang, Y., Adaptive backstepping output feedback control for a class of nonlinear fractional order systems, Nonlinear Dynam., 86, 2, 1047-1056 (2016) · Zbl 1349.93231 · doi:10.1007/s11071-016-2945-4
[27] Y.H. Wei, W.P. Tse, B. Du, and Y. Wang, An innovative fixed-pole numerical approximation for fractional order systems. ISA Transactions62 (2016), 94-102; .; Wei, Y. H.; Tse, W. P.; Du, B.; Wang, Y., An innovative fixed-pole numerical approximation for fractional order systems, ISA Transactions, 62, 94-102 (2016) · doi:10.1016/j.isatra.2016.01.010
[28] C. Yin, Y.Q. Chen, and S.M. Zhong, Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica50, No 12 (2014), 3173-3181; .; Yin, C.; Chen, Y. Q.; Zhong, S. M., Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems, Automatica, 50, 12, 3173-3181 (2014) · Zbl 1309.93041 · doi:10.1016/j.automatica.2014.10.027
[29] J.M. Yu, H. Hu, S.B. Zhou, and X.R. Lin, Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems. Automatica49, No 6 (2013), 1798-1803; .; Yu, J. M.; Hu, H.; Zhou, S. B.; Lin, X. R., Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems, Automatica, 49, 6, 1798-1803 (2013) · Zbl 1360.93513 · doi:10.1016/j.automatica.2013.02.041
[30] R.X. Zhang, G. Tian, S.P. Yang, and H.F. Cao, Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2). ISA Transactions56, (2015), 102-110; .; Zhang, R. X.; Tian, G.; Yang, S. P.; Cao, H. F., Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2), ISA Transactions, 56, 102-110 (2015) · doi:10.1016/j.isatra.2014.12.006
[31] X.F. Zhang and Y.Q. Chen, D-stability based LMI criteria of stability and stabilization for fractional order systems. In: Internat. Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, USA (2015), DETC2015-46692; .; Zhang, X. F.; Chen, Y. Q., D-stability based LMI criteria of stability and stabilization for fractional order systems, Internat. Design Engineering Technical Conferences & Computers and Information in Engineering Conference, DETC2015-46692 (2015) · doi:10.1115/DETC2015-46692
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.