×

Water distribution networks design under uncertainty. (English) Zbl 1362.90303

Summary: Water distribution networks are important systems that provide citizens with an essential public service which is crucial for the normal development of most basic activities of life. Despite many water distribution network problems have been extensively investigated in the literature, the presence of uncertainty in the data has often been neglected. This paper studies the challenging problem of designing an isolation system for water distribution networks under different failure scenarios. To solve the problem, three heuristic methods are presented and analyzed on a real case study taken from the literature. Numerical results show the merits of the suggested techniques for solving the problem.

MSC:

90C15 Stochastic programming
90C59 Approximation methods and heuristics in mathematical programming

Software:

CPLEX; AIMMS
Full Text: DOI

References:

[1] Aimms 3.12 (2012). Paragon decision technology B.V., The Netherlands. ILOG CPLEX 12.1 Users Manual ILOG Inc., CPLEX Division, Mountain View, USA
[2] Albareda-Sambola M, Alonso-Ayuso A, Escudero LF, Fernandez E, Pizarro C (2013) On solving the multi-period location-assignment problem under uncertainty. Comput Oper Res 40:2878-2892 · Zbl 1348.90375 · doi:10.1016/j.cor.2013.07.004
[3] Angelelli E, Mansini R, Speranza MG (2012) Kernel search: a new heuristic framework for portfolio selection. Comput Optim Appl 51(1):345-361 · Zbl 1246.91119 · doi:10.1007/s10589-010-9326-6
[4] Babayan AV, Kapelan Z, Savi DA, Walters GA (2005) Least cost design of robust water distribution networks under demand uncertainty. J Water Resour Plann Manag ASCE 131(5):375-382 · doi:10.1061/(ASCE)0733-9496(2005)131:5(375)
[5] Balas E, Jeroslow R (1972) Canonical cuts on the unit hypercube. SIAM J Appl Math 23(1):61-69 · Zbl 0237.52004 · doi:10.1137/0123007
[6] Basupi I, Kapelan Z (2014) Evaluating flexibility in water distribution system design under future demand uncertainty. J Infrastruct Syst 21(2):1-52
[7] Basupi I, Kapelan Z (2015) Flexible water distribution system design under future demand uncertainty. J Water Resour Plann Manage 141(4):04014067 · doi:10.1061/(ASCE)WR.1943-5452.0000416
[8] Beraldi P, Bruni ME (2009) A probabilistic model applied to emergency service vehicle location. Eur J Oper Res 196:323-331 · Zbl 1156.90405 · doi:10.1016/j.ejor.2008.02.027
[9] Beraldi P, Bruni ME, Conforti D (2009) The stochastic trim-loss problem. Eur J Oper Res 197:42-49 · Zbl 1157.90489 · doi:10.1016/j.ejor.2008.04.042
[10] Beraldi P, Violi D, Scordino N, Sorrentino N (2011) Short-term electricity procurement: a rolling horizon stochastic programming approach. Appl Math Model 35(8):3980-3990 · Zbl 1221.91029 · doi:10.1016/j.apm.2011.02.002
[11] Beraldi P, Bruni ME, Violi A (2012) Capital rationing problems under uncertainty and risk. Comput Optim Appl 51(3):1375-1396 · Zbl 1241.90064 · doi:10.1007/s10589-010-9390-y
[12] Birge JR, Louveaux FV (1997) Introduction to stochastic programming. Springer series on operations research. Springer, New York · Zbl 0892.90142
[13] Bruni ME, Beraldi P, Laganá D (2013) The express heuristic for probabilistically constrained integer problems. J Heuristics 19(3):423-441 · doi:10.1007/s10732-013-9218-x
[14] Bruni ME, Beraldi P, Conforti D (2014) A stochastic programming approach for the strategic valve locations problem in a water distribution system. Procedia Soc Behav Sci 108(8):129-38 · doi:10.1016/j.sbspro.2013.12.826
[15] Bruni ME, Beraldi P, Conforti D (2015) A stochastic programming approach for operating theatre scheduling under uncertainty. IMA J Manag Math 26(1):99-119 · Zbl 1433.90090 · doi:10.1093/imaman/dpt027
[16] Caroe CC, Schultz R (1999) Dual decomposition in stochastic integer programming. Oper Res Lett 24:37-45 · Zbl 1063.90037 · doi:10.1016/S0167-6377(98)00050-9
[17] Cattafi M, Gavanelli M, Nonato M, Alvisi S, Franchini M (2011) Optimal placement of valves in a water distribution network with CLP(FD). Theory Pract Logic Program 11(4-5):731-747 · Zbl 1222.68052 · doi:10.1017/S1471068411000275
[18] Creaco E, Franchini M, Alvisi S (2010) Optimal placement of isolation valves in water distribution systems based on valve cost and weighted average demand shortfall. J Water Resour Plann Manag 24(15):4317-4338 · doi:10.1007/s11269-010-9661-5
[19] Fadaee MJ, Tabatabaei R (2010) Estimation of failure probability in water pipes network using statistical model. World Appl Sci J 11(9):1157-1163
[20] Farmani R, Butler D (2013) Towards more resilient and adaptable water distribution systems under future demand uncertainty. Water Sci Technol Water Supply 13(6):1495-1506 · doi:10.2166/ws.2013.161
[21] Fischetti M, Lodi A (2003) Local branching. Math Program 98:23-47 · Zbl 1060.90056 · doi:10.1007/s10107-003-0395-5
[22] Gavanelli M, Nonato M, Peano A, Alvisi S, Franchini M (2012) An ASP approach for the valves positioning optimization in a water distribution system. In: Lisi F (ed) 9th Italian convention on computational logic (CILC 2012), Rome, Italy, vol 857 of CEUR Workshop Proceedings, pp 134-148 · Zbl 1292.90329
[23] Germanopoulos G (1985) A technical note on the inclusion of pressure dependent demand and leakage terms in water supply network models. Civ Eng Syst 2:171-179 · doi:10.1080/02630258508970401
[24] Germanopoulos G, Jowitt PW (1989) Leakage reduction by excessive pressure minimization in a water supply network. Proc Inst Civ Eng Part 2(87):195-214
[25] Giustolisi O, Savic DA, Kapelan Z (2008) Pressure-driven demand and leakage simulation for water distribution networks. J Hydraul Eng 134(5):626-635 · doi:10.1061/(ASCE)0733-9429(2008)134:5(626)
[26] Giustolisi O, Kapelan Z, Savic DA (2008) An algorithm for automatic detection of topological changes in water distribution networks. J Hydraul Eng 134(4):435-446 · doi:10.1061/(ASCE)0733-9429(2008)134:4(435)
[27] Giustolisi O, Savic DA (2010) Identification of segments and optimal isolation valve system design in water distribution networks. Urban Water J 7:1-15 · doi:10.1080/15730620903287530
[28] Giustolisi O, Laucelli D (2011) Water distribution network pressure-driven analysis using EGGA. J Water Resour Plann Manag 137(6):117-127 · doi:10.1061/(ASCE)WR.1943-5452.0000140
[29] Hansen P, Mladenovic N, Perez JAM (2010) Variable neighbourhood search: methods and applications. Ann Oper Res 175:367-407 · Zbl 1185.90211 · doi:10.1007/s10479-009-0657-6
[30] Kapelan Z, Babayan AV, Savi DA, Walters GA, Khu ST (2004) Two new approaches for the stochastic least cost design of water distribution systems. Water Sci Technol Water Supply 4(5-6):355-363
[31] Kapelan Z, Savi DA, Walters GA, Babayan AV (2005) Risk and robustness based solutions to a multiobjective water distribution system rehabilitation problem under uncertainty. Water Sci Technol IWA 53(1):61-75 · doi:10.2166/wst.2006.008
[32] Khatri K, Vairavamoorthy K (2011) A new approach of decision making under uncertainty for selecting a robust strategy: a case of water pipes failure. In: Ayyub BM (ed) Vulnerability, uncertainty, and risk: analysis, modeling, and management. American Society of Civil Engineers, pp 953-962
[33] Le Gat Y, Eisenbeis P (2000) Using maintenance records to forecast failures in water network. Urban Water 2(3):173-181 · doi:10.1016/S1462-0758(00)00057-1
[34] Maggioni F, Kaut M, Bertazzi L (2009) Stochastic optimization models for a single-sink transportation problem. Comput Manag Sci Spec Issue Comput Optim Under Uncertain 6(2):251-267 · Zbl 1170.90325
[35] Marques J, Cunha MC, Sousa J, Savi D (2012) Robust optimization methodologies for water supply systems design. Drink Water Eng Sci Discuss 5(1):173-192 · doi:10.5194/dwesd-5-173-2012
[36] Nannicini G, Belotti P (2012) Rounding-based heuristics for nonconvex MINLPs. Mathe Program Comput 4(1):1-31 · Zbl 1257.90059 · doi:10.1007/s12532-011-0032-x
[37] Peano A, Nonato M, Gavanelli M, Alvisi S, Franchini M (2012) A bilevel mixed integer linear programming model for valves location in water distribution systems. In: 3rd student conference on operational research. OpenAccess series in informatics (OASIcs, (ed) Ravizza S, Holborn P, vol 22. Schloss Dagstuhleibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 103-112 · Zbl 1292.90329
[38] Poulakis Z, Valougeorgis D, Papadimitriou C (2003) Leakage detection in water pipe networks using a Bayesian probabilistic framework. Probab Eng Mech 18:315327 · doi:10.1016/S0266-8920(03)00045-6
[39] Shinozuka M, Liang J (1999) On-line damage identification of water delivery systems. Proceedings of Engng Mech Conf
[40] Todini E, Pilati S (1988) A gradient method for the solution of looped pipe networks. In: Coulbeck B, Orr CH (eds) Computer applications in water supply. Research Studies Press Ltd. Taunton, pp 1-20
[41] Vespucci MT, Maggioni F, Bertocchi MI, Innorta M (2010) A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants. Ann Oper Res 193(1):91-105 · Zbl 1254.90079 · doi:10.1007/s10479-010-0756-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.