×

Helicoidal surfaces satisfying \({\Delta ^{\mathrm{II}}\mathbf{G}=f(\mathbf{G}+C)}\). (English) Zbl 1362.53011

Summary: In this paper, we study helicoidal surfaces without parabolic points in Euclidean 3-space \({\mathbb{R}^{3}}\), satisfying the condition \({\Delta ^{II}\mathbf{G}=f(\mathbf{G}+C)}\), where \({\Delta ^{II}}\) is the Laplace operator with respect to the second fundamental form, \(f\) is a smooth function on the surface and \(C\) is a constant vector. Our main results state that helicoidal surfaces without parabolic points in \({\mathbb{R}^{3}}\) which satisfy the condition \({\Delta^{II} \mathbf{G}=f(\mathbf{G}+C)}\), coincide with helicoidal surfaces with non-zero constant Gaussian curvature.

MSC:

53A05 Surfaces in Euclidean and related spaces
Full Text: DOI

References:

[1] Baba-Hamed, Ch., Bekkar, M.: Helicoidal surfaces in the three-dimensional Lorentz-Minkowski space satisfying \[{\Delta^{II}r_i=\lambda_ir_i}\] ΔIIri=λiri. J. Geom. 100, 1-10 (2011) · Zbl 1244.53021
[2] Baba-Hamed, C., Bekkar, M.: Surfaces of revolution satisfying \[{\Delta^{II}\mathbf{G}=f(\mathbf{G}+C)}\] ΔIIG=f(G+C). Bull. Korean Math. Soc. 50(4), 1061-1067 (2013) · Zbl 1275.53006
[3] Baikoussis C., Blair D.E.: On the Gauss map of ruled surfaces. Glasg. Math. J. 34, 355-359 (1992) · Zbl 0762.53004 · doi:10.1017/S0017089500008946
[4] Baikoussis C., Chen B.-Y., Verstraelen L.: Ruled surfaces and tubes with finite type Gauss maps. Tokyo J. Math. 16, 341-349 (1993) · Zbl 0798.53055 · doi:10.3836/tjm/1270128488
[5] Chen B.-Y.: On submanifolds of finite type. Soochow J. Math. 9, 65-81 (1987)
[6] Chen B.-Y.: Total Mean Curvature and Submanifolds of Finite Type. World Scientific Publishing, New Jersey (1984) · Zbl 0537.53049 · doi:10.1142/0065
[7] Chen B.-Y.: A report of submanifolds of finite type. Soochow J. Math. 22(2), 117-337 (1996) · Zbl 0867.53001
[8] Chen B.-Y., Choi M., Kim Y.H.: Surfaces of revolution with pointwise 1-type Gauss map. J. Korean Math. Soc. 42(3), 447-455 (2005) · Zbl 1082.53004 · doi:10.4134/JKMS.2005.42.3.447
[9] Chen B.-Y., Piccinni P.: Submanifolds with finite type Gauss map. Bull. Aust. Math. Soc. 35, 161-186 (1987) · Zbl 0672.53044 · doi:10.1017/S0004972700013162
[10] Choi M., Kim Y.H.: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 38(4), 753-761 (2001) · Zbl 1003.53006
[11] Choi M., Kim D.-S., Kim Y.H.: Helicoidal surfaces with pointwise 1-type Gauss map. J. Korean Math. Soc. 46(1), 215-223 (2009) · Zbl 1159.53010 · doi:10.4134/JKMS.2009.46.1.215
[12] Kim Y.H., Yoon D.W.: Ruled surfaces with finite type Gauss map in Minkowski spaces. Soochow J. Math. 26, 85-96 (2000) · Zbl 0976.53020
[13] Kim Y.H., Yoon D.W.: Ruled surfaces with pointwise 1-type Gauss map. J. Geom. Phys. 34(3-4), 191-205 (2000) · Zbl 0962.53034 · doi:10.1016/S0393-0440(99)00063-7
[14] Kim Y.H., Yoon D.W.: On the Gauss map of ruled surfaces in Minkowski space. Rocky Mt. J. Math. 35(5), 1555-1581 (2005) · Zbl 1103.53010 · doi:10.1216/rmjm/1181069651
[15] Niang A.: Rotation surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 42(1), 23-27 (2005) · Zbl 1077.53006 · doi:10.4134/BKMS.2005.42.1.023
[16] Niang A.: On rotation surfaces in the Minkowski 3-dimensional space with pointwise 1-type Gauss map. J. Korean Math. Soc. 41(6), 1007-1021 (2004) · Zbl 1073.53029 · doi:10.4134/JKMS.2004.41.6.1007
[17] O’Neill B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983) · Zbl 0531.53051
[18] Senoussi, B., Bekkar, M.: Helicoidal surfaces in the three-dimensional Lorentz-Minkowski space satisfying \[{\Delta^{II}r=Ar}\] ΔIIr=Ar. Kyushu J. Math. 67, 327-338 (2013) · Zbl 1278.53025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.