×

A topological equivalence result for a family of nonlinear difference systems having generalized exponential dichotomy. (English) Zbl 1361.39001

Some sufficient conditions guaranteeing the topological and strong topological equivalence of the two perturbed difference systems of the form \[ x_{n+1}=A_nx_n+f(n,x_n),\tag{1} \]
\[ y_{n+1}=A_ny_n+g(n,y_n)\tag{2} \] are obtained whose linear parts \[ \begin{aligned} & x_{n+1}=A_nx_n,\\ & y_{n+1}=A_ny_n\end{aligned} \] have the generalized exponential dichotomy property. There are two innovation in this work, first of which is considering generalized exponential dichotomy and second is proving the continuity of the map \(x\mapsto H(n,x)\) in details, where the map \(H:\mathbb{Z}\times\mathbb{R}^d\rightarrow\mathbb{R}^d\) satisfies the properties:
(i)
\(u\mapsto H(n,u)\) is an homeomorphism of \(\mathbb{R}^d\) for each fixed \(n\in\mathbb{Z}\);
(ii)
\(H(n,u)-u\) is bounded \(\mathbb{Z}\times\mathbb{R}^d\);
(iii)
If \(x_n\) is a solution (1), then \(H(n,x_n)\) is a solution of (2);
(iv)
\(u\mapsto H^{-1}(n,u)\) has Properties (i)–(iii).
To obtain the stronger results like uniform continuity of the map \(H(n,x)\), the authors overcome the technical difficulties by imposing some conditions on the nonlinear functions \(f\) and \(g\), one of which is \[ |f(n,x)|\leq F_n\quad\text{and}\quad|g(n,x)|\leq G_n \] for some non-negative sequences \(F_n\) and \(G_n\) satisfying some properties given in the paper with details.

MSC:

39A10 Additive difference equations
39A12 Discrete version of topics in analysis
37C70 Attractors and repellers of smooth dynamical systems and their topological structure

References:

[1] DOI: 10.1016/j.jde.2006.04.001 · Zbl 1099.37022 · doi:10.1016/j.jde.2006.04.001
[2] Chen X., Int. J. Differ. Equ (2011)
[3] DOI: 10.1007/BF01350095 · Zbl 0189.40303 · doi:10.1007/BF01350095
[4] DOI: 10.1007/BFb0065310 · doi:10.1007/BFb0065310
[5] Elaydi S., An Introduction to Difference Equations (2005) · Zbl 1071.39001
[6] DOI: 10.1155/2014/632109 · doi:10.1155/2014/632109
[7] DOI: 10.1155/2014/632109 · doi:10.1155/2014/632109
[8] Hartman P., Bol. Soc. Mat. Mexicana 5 pp 220– (1960)
[9] DOI: 10.1016/j.jmaa.2005.05.042 · Zbl 1098.34042 · doi:10.1016/j.jmaa.2005.05.042
[10] DOI: 10.1016/j.na.2006.06.054 · Zbl 1122.34315 · doi:10.1016/j.na.2006.06.054
[11] Kurzweil J., Czech. Math. J. 38 pp 280– (1988)
[12] DOI: 10.1016/0022-0396(91)90112-M · Zbl 0753.34040 · doi:10.1016/0022-0396(91)90112-M
[13] DOI: 10.1016/S0362-546X(98)00198-9 · Zbl 0931.34007 · doi:10.1016/S0362-546X(98)00198-9
[14] DOI: 10.1016/0022-0396(73)90033-8 · Zbl 0249.34043 · doi:10.1016/0022-0396(73)90033-8
[15] DOI: 10.1016/0022-247X(73)90245-X · Zbl 0272.34056 · doi:10.1016/0022-247X(73)90245-X
[16] Papaschinopoulos G., Analysis 16 pp 161– (1996)
[17] Papaschinopoulos G., Czech. Math. J. 35 pp 295– (1985)
[18] DOI: 10.1016/0898-1221(94)00114-6 · Zbl 0806.39004 · doi:10.1016/0898-1221(94)00114-6
[19] DOI: 10.12732/ijpam.v98i3.8 · doi:10.12732/ijpam.v98i3.8
[20] Schinas J., Boll. Unione Math. Ital. 4 pp 61– (1985)
[21] DOI: 10.1006/jmaa.1995.1205 · Zbl 0856.34057 · doi:10.1006/jmaa.1995.1205
[22] DOI: 10.1016/j.jmaa.2012.11.034 · Zbl 1272.34048 · doi:10.1016/j.jmaa.2012.11.034
[23] DOI: 10.1016/j.nonrwa.2013.05.001 · Zbl 1303.37007 · doi:10.1016/j.nonrwa.2013.05.001
[24] DOI: 10.1016/j.bulsci.2014.12.005 · Zbl 1331.34065 · doi:10.1016/j.bulsci.2014.12.005
[25] DOI: 10.1016/j.na.2011.09.001 · Zbl 1243.37020 · doi:10.1016/j.na.2011.09.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.