×

Toward predictive multiscale modeling of vascular tumor growth, computational and experimental oncology for tumor prediction. (English) Zbl 1360.92059

Summary: New directions in medical and biomedical sciences have gradually emerged over recent years that will change the way diseases are diagnosed and treated and are leading to the redirection of medicine toward patient-specific treatments. We refer to these new approaches for studying biomedical systems as predictive medicine, a new version of medical science that involves the use of advanced computer models of biomedical phenomena, high-performance computing, new experimental methods for model data calibration, modern imaging technologies, cutting-edge numerical algorithms for treating large stochastic systems, modern methods for model selection, calibration, validation, verification, and uncertainty quantification, and new approaches for drug design and delivery, all based on predictive models. The methodologies are designed to study events at multiple scales, from genetic data, to sub-cellular signaling mechanisms, to cell interactions, to tissue physics and chemistry, to organs in living human subjects. The present document surveys work on the development and implementation of predictive models of vascular tumor growth, covering aspects of what might be called modeling-and-experimentally based computational oncology. The work described is that of a multi-institutional team, centered at ICES with strong participation by members at M. D. Anderson Cancer Center and University of Texas at San Antonio. This exposition covers topics on signaling models, cell and cell-interaction models, tissue models based on multi-species mixture theories, models of angiogenesis, and beginning work of drug effects. A number of new parallel computer codes for implementing finite-element methods, multi-level Markov chain Monte Carlo sampling methods, data classification methods, stochastic PDE solvers, statistical inverse algorithms for model calibration and validation, models of events at different spatial and temporal scales is presented. Importantly, new methods for model selection in the presence of uncertainties fundamental to predictive medical science, are described which are based on the notion of Bayesian model plausibilities. Also, as part of this general approach, new codes for determining the sensitivity of model outputs to variations in model parameters are described that provide a basis for assessing the importance of model parameters and controlling and reducing the number of relevant model parameters. Model specific data is to be accessible through careful and model-specific platforms in the Tumor Engineering Laboratory. We describe parallel computer platforms on which large-scale calculations are run as well as specific time-marching algorithms needed to treat stiff systems encountered in some phase-field mixture models. We also cover new non-invasive imaging and data classification methods that provide in vivo data for model validation. The study concludes with a brief discussion of future work and open challenges.

MSC:

92C50 Medical applications (general)
92-08 Computational methods for problems pertaining to biology

Software:

PMTK; DDDAS; QUESO; DAKOTA; libMesh
Full Text: DOI

References:

[1] Abraham FF, Broughton JQ, Bernstein N, Kaxiras E (1998) Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys Lett (EPL) 44(6):783 · doi:10.1209/epl/i1998-00536-9
[2] Adams BM, Bauman LE, Bohnhoff WJ, Dalbey KR, Ebeida MS, Eddy JP, Eldred MS, Hough PD, Hu KT, Jakeman JD, Swiler LP, Vigil DM (2009) Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.4 user’s manual. Technical report, Sandia technical report SAND2010-2183. Sandia National Laboratories, Livermore, CA
[3] Albano G, Giorno V (2006) A stochastic model in tumor growth. J Theor Biol 242(2):329-336 · Zbl 1143.92017 · doi:10.1016/j.jtbi.2006.03.001
[4] Albano G, Giorno V, Román-Román P, Torres-Ruiz F (2012) Inference on a stochastic two-compartment model in tumor growth. Comput Stat Data Anal 56:1723-1736 · Zbl 1243.62132 · doi:10.1016/j.csda.2011.10.016
[5] Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195 · doi:10.1038/ncb1497
[6] Almeida RC, Oden JT (2010) Solution verification, goal-oriented adaptive methods for stochastic advectiondiffusion problems. Comput Methods Appl Mech Eng 199(3740):2472-2486 · Zbl 1231.76239 · doi:10.1016/j.cma.2010.04.001
[7] Anderson ARA, Chaplain MAJ (1995) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60:857-899 · Zbl 0923.92011 · doi:10.1006/bulm.1998.0042
[8] Antoine E, Vlachos P, Rylander MN (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B 20(6):683-696 · doi:10.1089/ten.teb.2014.0086
[9] Antoine E, Vlachos P, Rylander MN (2015) Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PloS (epub ahead of print) 10(3):1-18
[10] Ariffin AB, Forde PF, Jahangeer S, Soden DM, Hinchion J (2014) Releasing pressure in tumors: what do we know so far and where do we go from here? A review. Cancer Res 74(10):2655-2662 · doi:10.1158/0008-5472.CAN-13-3696
[11] Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86:226235 · doi:10.1093/cvr/cvq049
[12] Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26-41 · doi:10.1016/j.media.2007.06.004
[13] Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zhang H (2014) PETSc web page. http://www.mcs.anl.gov/petsc · Zbl 1109.92020
[14] Bao A, Phillips WT, Goins B, McGuff HS, Zheng X, Woolley FR, Natarajan M, Santoyo C, Miller FR, Otto RA (2006) Setup and characterization of a human head and neck squamous cell carcinoma xenograft model in nude rats. Otolaryngol Head Neck Surg 135(6):853-857 · doi:10.1016/j.otohns.2006.06.1257
[15] Beck JL, Yuen KV (2004) Model selection using response measurements: Bayesian probabilistic approach. J Eng Mech 130(2):192-203 · doi:10.1061/(ASCE)0733-9399(2004)130:2(192)
[16] Beg MF, Miller MI, Trouvé A, Younes L (2005) Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int J Comput Vis 61(2):139-157 · Zbl 1477.68459 · doi:10.1023/B:VISI.0000043755.93987.aa
[17] Bellomo N, Li NK, Maini PK (2008) On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math Models Methods Appl Sci 18(4):593-646 · Zbl 1151.92014 · doi:10.1142/S0218202508002796
[18] Berg JM, Tymoczko JL, Stryer L (2006) Biochemistry, 6th edn. W. H. Freeman, San Francisco
[19] Berger JO (1985) Statistical decision theory and bayesian analysis. Springer, Berlin · Zbl 0572.62008 · doi:10.1007/978-1-4757-4286-2
[20] Buchanan CF, Rylander MN (2015) Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response. Biotechnol Bioeng 110(B):2063-2072
[21] Buchanan CF, Verbridge SS, Vlachos PP, Rylander MN (2014) Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model. Cell Adhesion Migr 8(5):517-524 · doi:10.4161/19336918.2014.970001
[22] Buchanan CF, Voigt E, Szot CS, Freeman JW, Vlachos PP, Rylander MN (2013) Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng Part C Methods 20(1):64-75 · doi:10.1089/ten.tec.2012.0731
[23] Byrne H, Drasdo D (2009) Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 58(4-5):657-687 · Zbl 1311.92060 · doi:10.1007/s00285-008-0212-0
[24] Cacuci DG (2007) Sensitivity and uncertainty analysis: theory, vol 1. CRC Press, Boca Raton · Zbl 1030.60001
[25] Calvetti D, Somersalo E (2007) Introduction to Bayesian scientific computing: ten lectures on subjective computing. Springer, Berlin · Zbl 1137.65010
[26] Cao Y, Jiang Y, Li B, Feng X (2012) Biomechanical modeling of surface wrinkling of soft tissues with growth-dependent mechanical properties. Acta Mech Solida Sin 25(5):483-492 · doi:10.1016/S0894-9166(12)60043-3
[27] Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, Weinstein A, Nelson JS, Tsukada Y (1983) Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. Cancer 52:997-1007 · doi:10.1002/1097-0142(19830915)52:6<997::AID-CNCR2820520612>3.0.CO;2-2
[28] Chaplain MAJ (1996) Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Math Comput Model 23(6):47-87 · Zbl 0859.92012 · doi:10.1016/0895-7177(96)00019-2
[29] Cheng G, Tse J, Jain RK, Munn LL (2009) Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PloS One 4(2):e4632 · doi:10.1371/journal.pone.0004632
[30] Chevalier MW, El-Samad H (2014) A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions. J Chem Phys 141:214108 · doi:10.1063/1.4902239
[31] Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings algorithm. Am Stat 49(4):327-335
[32] Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5(10):1435-1447 · doi:10.1109/83.536892
[33] Cimmelli V, Sellitto A, Triani V (2010) A generalized Coleman-Noll procedure for the exploitation of the entropy principle. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol 466. The Royal Society, London, p 911-925 · Zbl 1195.82068
[34] Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167-178 · Zbl 0113.17802 · doi:10.1007/BF01262690
[35] Cox RT (1946) Probability, frequency and reasonable expectation. Am J Phys 14(1):1-13 · Zbl 0063.01001 · doi:10.1119/1.1990764
[36] Criminisi A, Shotton J (2013) Decision forests for computer vision and medical image analysis. Springer, Berlin · doi:10.1007/978-1-4471-4929-3
[37] Cristini V, Li X, Lowengrub JS, Wise SM (2009) Nonlinear simulation of solid tumor growth using a mixture model: invasion and branching. J Math Biol 58:723-763 · Zbl 1311.92039 · doi:10.1007/s00285-008-0215-x
[38] Cristini V, Lowengrub J (2010) Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, Cambridge · doi:10.1017/CBO9780511781452
[39] Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH (1973) Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I. Theory. J Chem Phys 59(8):3873-3878 · doi:10.1063/1.1680571
[40] Curtin WA, Miller RE (2003) Atomistic/continuum coupling in computational materials science. Model Simul Mater Sci Eng 11(3):R33 · doi:10.1088/0965-0393/11/3/201
[41] D’Antonio G, Macklin P, Preziosi L (2013) An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Math Biosc Eng 10(1):75-101 · Zbl 1259.65001 · doi:10.3934/mbe.2013.10.75
[42] Deakin NE, Chaplain MAJ (2013) Mathematical modeling of cancer invasion: the role of membrane-bound matrix metalloproteinases. In: Rejniak KA, Enderling H (eds) Computational models in oncology: from tumor initiation to progression to treatment. Frontiers Media SA, Switzerland
[43] Deisboeck TS, Stamatakos GS (2010) Multiscale cancer modeling. In: Britton NF, Lin X, Safer HM, Scheneider MV, Singh M, Tramontano A (eds) Chapman & Hall/CRC mathematical and computational biology series. Taylor & Francis Group, London · Zbl 1388.80006
[44] Demicheli R, Foroni R, Ingrosso A, Pratesi G, Soranzo C, Tortoreto M (1989) An exponential-Gompertzian description of lovo cell tumor growth from in vivo and in vitro data. Cancer Res 49:6543-6546
[45] Dupuis P, Grenander U, Miller MI (1998) Variational problems on flows of diffeomorphisms for image matching. Q Appl Math 56(3):587 · Zbl 0949.49002
[46] Elliot CM (1989) The Cahn-Hilliard model for the kinetics of phase separation. In: Rodrigues JF (ed) Mathematical models for phase change problems. Birkhauser, Switzerland · Zbl 0624.35048
[47] Elliott CM, Songmu Z (1986) On the Cahn-Hilliard. Arch Ration Mech Anal 96(4):339-357 · Zbl 0624.35048 · doi:10.1007/BF00251803
[48] Eyre DJ (1998) Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: Bullard JW, Chen LQ (eds) Computational and mathematical models of microstructural evolution, MRS proceedings, vol 529. Cambridge University Press, Cambridge, pp 39-46 · Zbl 0113.17802
[49] Feng, Y.; Boukhris, SJ; Ranjan, R.; Valencia, RA; De, S. (ed.); Hwang, W. (ed.); Kuhl, E. (ed.), Biological systems: multiscale modeling based on mixture-theory (2015), Berlin
[50] Fife PC (2000) Models for phase separation and their mathematics. Electron J Differ Equ 48:1-26 · Zbl 0957.35062
[51] Frieboes HB, Jin F, Chuang YL, Wise S, Lowengrub J, Cristini V (2011) Three-dimensional multispecies nonlinear tumor growth—II: tumor invasion and angiogenesis. J Theor Biol 264(4):1254-1278 · Zbl 1406.92049 · doi:10.1016/j.jtbi.2010.02.036
[52] Frieboes HB, Lowengrubb JS, Wise S, Zheng X, Macklin P, Bearer E, Cristini V (2007) Computer simulation of glioma growth and morphology. Neuroimage 37(Suppl. 1):S59-S70 · doi:10.1016/j.neuroimage.2007.03.008
[53] Ganapathy-Kanniappan S, Geschwind JFH (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12:152 · doi:10.1186/1476-4598-12-152
[54] Ghanem RG, Spanos PD (2003) Stochastic finite elements: a spectral approach, revised edn. Dover, New York
[55] Gonalves E, Bucher J, Ryll A, Niklas J, Mauch K, Klamt S, Rochad M, Saez-Rodriguez J (2013) Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Mol Biosyst 9:1576 · doi:10.1039/c3mb25489e
[56] Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144(5):646-674 · doi:10.1016/j.cell.2011.02.013
[57] Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57-70 · doi:10.1016/S0092-8674(00)81683-9
[58] Hawkins-Daarud A, van der Zee KG, Tinsley Oden J (2012) Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int J Numer Methods in Biomed Eng 28(1):3-24 · Zbl 1242.92030 · doi:10.1002/cnm.1467
[59] Hawkins-Daarud AJ (2011) Toward a predictive model of tumor growth. Ph.D. thesis, The University of Texas at Austin
[60] Heida M, Málek J, Rajagopal KR (2012) On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework. Z Angew Math Phys 63:145-169 · Zbl 1295.76002 · doi:10.1007/s00033-011-0139-y
[61] Hesketh R (2013) Introduction to cancer biology, 1st edn. Cambridge University Press, Cambridge
[62] Hyun AA, Macklin P (2013) Improved patient-specific calibration for agent-based cancer modeling. J Theor Biol 317:422-424 · doi:10.1016/j.jtbi.2012.10.017
[63] Jackson TL (ed) (2012) Modeling tumor vasculature—molecular, cellular, and tissue level aspects and implications. Springer, Berlin
[64] Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205-2218 · doi:10.1200/JCO.2012.46.3653
[65] Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge · Zbl 1045.62001 · doi:10.1017/CBO9780511790423
[66] Szekely T Jr, Burrage K (2014) Stochastic simulation in systems biology. Comput Struct Biotechnol J 12(2021):14-25 · doi:10.1016/j.csbj.2014.10.003
[67] Kaipio J, Somersalo E (2005) Statistical and computational inverse problems. Springer, Berlin · Zbl 1068.65022
[68] Kansal A, Torquato S, Harsh GR IV, Chiocca E, Deisboeck T (2000) Cellular automaton of idealized brain tumor growth dynamics. Biosystems 55(13):119-127 · doi:10.1016/S0303-2647(99)00089-1
[69] Kansal AR, Torquato S, Harsh GR IV, Chiocca EA, Deisboeck TS (2000) Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203(4):367-382 · doi:10.1006/jtbi.2000.2000
[70] Kholodenko BN, Hancock JF, Kolch W (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195 · doi:10.1038/ncb1497
[71] Kihara T, Ito J, Miyake J (2013) Measurement of biomolecular diffusion in extracellular matrix condensed by fibroblasts using fluorescence correlation spectroscopy. PloS One 8(11):e82,382 · doi:10.1371/journal.pone.0082382
[72] Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput 22(3-4):237-254 · doi:10.1007/s00366-006-0049-3
[73] Knowles MA, Selby PJ (2005) Introduction to the cellular and molecular biology of cancer, 4th edn. Oxford University Press, Oxford
[74] Le Maître OP, Knio OM (2010) Spectral methods for uncertainty quantification. Springer, Berlin · Zbl 1193.76003 · doi:10.1007/978-90-481-3520-2
[75] Lima EABF, Almeida RC (2011) A comparative study of some fem mixed formulations for the 1D Cahn-Hilliard equation. In: CILAMCE XXXII
[76] Lima EABF, Almeida RC, Oden JT (2015) Analysis and numerical solution of stochastic phase-field models of tumor growth. Numer Methods Part Differ Equ 31(2):552-574 · Zbl 1326.92041 · doi:10.1002/num.21934
[77] Lima EABF, Oden JT, Almeida RC (2014) A hybrid ten-species phase-field model of tumor growth. Math Models Methods Appl Sci 24(13):2569-2599 · Zbl 1404.35459 · doi:10.1142/S0218202514500304
[78] Liotta LA, Saidel GM, Kleinerman J (1976) Stochastic model of mestastases formation. Biometrics 32:535-550 · Zbl 0341.92014 · doi:10.2307/2529743
[79] Liu F, Bayarri MJ, Berger JO, Paulo R, Sacks J (2008) A Bayesian analysis of the thermal challenge problem. Comput Methods Appl Mech Eng 197:2457-2466 · Zbl 1388.80006 · doi:10.1016/j.cma.2007.05.032
[80] Liu WK, Karpov EG, Park HS (2006) Nano mechanics and materials: theory, multiscale methods and applications. Wiley, New York · doi:10.1002/0470034106
[81] Lo CF (2007) Stochastic Gompertz model of tumour cell growth. J Theor Biol 248:317-321 · Zbl 1451.92099 · doi:10.1016/j.jtbi.2007.04.024
[82] Lowengrub JS, Frieboes HB, Jin F, Chuang Y, Li X, Macklin P, Wise S, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1):R1 · Zbl 1181.92046 · doi:10.1088/0951-7715/23/1/R01
[83] Macklin P, Edgerton ME, Thompson AM, Cristini V (2012) Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression. J Theor Biol 301:122-140 · Zbl 1397.92346 · doi:10.1016/j.jtbi.2012.02.002
[84] Macklin, P.; Mumenthaler, S.; Lowengrub, J.; Gefen, A. (ed.), Modeling multiscale necrotic and calcified tissue biomechanics in cancer patients: application to ductal carcinoma in situ (DCIS) (2013), Berlin
[85] Mallet DG, De Pillis LG (2006) A cellular automata model of tumor-immune system interactions. J Theor Biol 239:334-350 · Zbl 1445.92079 · doi:10.1016/j.jtbi.2005.08.002
[86] Mantzaris N, Webb S, Othmer HG (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49:111-187 · Zbl 1109.92020 · doi:10.1007/s00285-003-0262-2
[87] Martin EA (ed) (2010) A dictionary of science, 6th edn. Oxford University Press, Oxford
[88] Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 1-32
[89] Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95:3146-3160 · doi:10.1529/biophysj.107.124511
[90] Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge · Zbl 1295.68003
[91] Najafi A, Bidkhori G, Bozorgmehr JH, Koch I, Masoudi-Nejad A (2014) Genome scale modeling in systems biology: algorithms and resources. Curr Genomics 15:130-159 · doi:10.2174/1389202915666140319002221
[92] National Cancer Institute (2012) Dictionary of cancer terms. http://www.cancer.gov/dictionary
[93] Naumov L, Hoekstra A, Sloot P (2011) Cellular automata models of tumour natural shrinkage. Phys A Stat Mech Appl 390(12):2283-2290 · doi:10.1016/j.physa.2011.02.006
[94] Naumov L, Hoekstra A, Sloot P (2012) The influence of mitoses rate on growth dynamics of a cellular automata model of tumour growth. Proc Comput Sci 1:971-978 · doi:10.1016/j.procs.2010.04.107
[95] Niemisto A, Dunmire V, Yli-Harja O, Zhang W, Shmulevich I (2005) Analysis of angiogenesis using in vitro experiments and stochastic growth models. Phys Rev E 72: 062902-1-062902-4
[96] Norton K, Wininger M, Bhanot G, Ganesan S, Barnard N, Shinbrot T (2010) A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. J Theor Biol 263(4):393-406 · Zbl 1406.92061 · doi:10.1016/j.jtbi.2009.11.024
[97] Oden J, Strouboulis T, Devloo P (1986) Adaptive finite element methods for the analysis of inviscid compressible flow: part I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes. Comput Methods Appl Mech Eng 59(3):327-362 · Zbl 0593.76080 · doi:10.1016/0045-7825(86)90004-6
[98] Oden JT, Hawkins A, Prudhomme S (2010) General diffuse-interface theories and an approach to predictive tumor growth modeling. Math Models Methods Appl Sci 20(3):477-517 · Zbl 1186.92024 · doi:10.1142/S0218202510004313
[99] Oden JT, Prudencio EE, Hawkins-Daarud A (2013) Selection and assessment of phenomenological models of tumor growth. Math Models Methods Appl Sci 23(07):1309-1338 · Zbl 1301.92034 · doi:10.1142/S0218202513500103
[100] Piotrowska MJ, Angus SD (2009) A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth. J Theor Biol 258(2):165-178 · Zbl 1402.92058 · doi:10.1016/j.jtbi.2009.02.008
[101] Preziosi L (2003) Cancer modelling and simulation, 1st edn. CRC Press, Boca Raton · Zbl 1039.92022 · doi:10.1201/9780203494899
[102] Prudencio E, Cheung SH (2012) Parallel adaptive multilevel sampling algorithms for the bayesian analysis of mathematical models. Int J Uncertain Quantif 2(3):215-237 · Zbl 1320.65022 · doi:10.1615/Int.J.UncertaintyQuantification.2011003499
[103] Prudencio EE, Bauman PT, Faghihi D, Ravi-Chandar K, Oden JT (2014) A computational framework for dynamic data-driven material damage control, based on bayesian inference and model selection. Int J Numer Methods Eng 102:379-403 · Zbl 1352.74275
[104] Prudencio EE, Cheung SH, Oliver T, Schulz K (2010) The parallel C++ statistical library ‘QUESO’: quantification of uncertainty for estimation, simulation and optimization (in preparation). Springer, New York
[105] Pyrz M, Baish J (2013) Effect of tumor heterogeneity on interstitial pressure and fluid flow. In: ASME 2013 summer bioengineering conference. American Society of Mechanical Engineers, Sunriver, Oregon, p V01AT07A004
[106] Quaranta V, Weaver AM, Cummings PT, Anderson ARA (2005) Mathematical modeling of cancer: the future of prognosis and treatment. Clin Chim Acta 357:173-179 · doi:10.1016/j.cccn.2005.03.023
[107] Ramis-Conde I, Chaplain MA, Anderson A (2008) Mathematical modelling of cancer cell invasion of tissue. Math Comput Model 47(56):533-545 (Towards a mathematical description of cancer: analytical, numerical and modelling aspects) · Zbl 1148.92021 · doi:10.1016/j.mcm.2007.02.034
[108] Ricken T, Schwarz A, Bluhm J (2007) A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Compu Mater Sci 39(1):124-136 · doi:10.1016/j.commatsci.2006.03.025
[109] Rocha HL, Lima EABF, Almeida RC (2015) An agent based model of the avascular tumor growth. Congresso Latino Americano de Biomatemática—SOLABIMA (in Portuguese)
[110] Roniotis A, Marias K, Sakkalis V, Tsibidis GD, Zervakis M (2009) A complete mathematical study of a 3D model of heterogeneous and anisotropic glioma evolution. In: Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009). IEEE, pp 2807-2810
[111] Roose T, Netti PA, Munn LL, Boucher Y, Jain RK (2003) Solid stress generated by spheroid growth estimated using a linear poroelasticity model. Microvasc Res 66(3):204-212 · doi:10.1016/S0026-2862(03)00057-8
[112] Rudd RE, Broughton JQ (1998) Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys Rev B 58(10):R5893-R5896 · doi:10.1103/PhysRevB.58.R5893
[113] Rybinski M (2008) Analysis of mathematical models of signalling pathways. Master thesis, Uniwersytet Warszawski
[114] Saltelli A, Chan K, Scott E (2009) Sensitivity analysis no. 2008 in Wiley paperback series. Wiley · Zbl 1152.62071
[115] Schnell S, Grima R, Maini P (2007) Multiscale modeling in biology new insights into cancer illustrate how mathematical tools are enhancing the understanding of life from the smallest scale to the grandest. Am Sci 95(2):134-142 · doi:10.1511/2007.64.134
[116] Seyfried TN, Flores R, Poff AM, DAgostino DP, Mukherjee P (2015) Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 356(2, Part A):289-300 · doi:10.1016/j.canlet.2014.07.015
[117] Shilkrot L, Miller R, Curtin W (2002) Coupled atomistic and discrete dislocation plasticity. Phys Rev Lett 89(2):025,501 · Zbl 1151.74307 · doi:10.1103/PhysRevLett.89.025501
[118] Shilkrot L, Miller RE, Curtin WA (2004) Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J Mech Phys Solids 52(4):755-787 · Zbl 1049.74015 · doi:10.1016/j.jmps.2003.09.023
[119] Shirazi AS (2011) Hierarchical self-organized learning in agent-based modeling of the MAPK signaling pathway. In: IEEE congress on evolutionary computation (CEC). IEEE, New Orleans, pp 2245-2251 · Zbl 1222.92018
[120] Shrestha SMB, Joldes G, Wittek A, Miller K (2014) Modeling three-dimensional avascular tumor growth using lattice gas cellular automata. In: Computational biomechanics for medicine. Springer, Berlin, pp 15-26
[121] Sobol��� IM (1990) Sensitivity estimates for nonlinear mathematical models. Matem Model 2:112-118 · Zbl 0974.00506
[122] Sobol’ IM (1993) Sensitivity analysis for non-linear mathematical models. Math Model Comput Exp 1:407-414 · Zbl 1039.65505
[123] Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152:377-403 · doi:10.1016/S0022-5193(05)80201-2
[124] Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, Smith BL, Ferrone CR, Hornicek FJ, Boucher Y et al (2012) Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci 109(38):15101-15108 · doi:10.1073/pnas.1213353109
[125] Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK (2013) Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 73(13):3833-3841 · doi:10.1158/0008-5472.CAN-12-4521
[126] Sun S, Wheeler MF, Obeyesekere M, Patrick CW Jr (2005) A deterministic model of growth factor-induced angiogenesis. Bull Math Biol 67:313-337 · Zbl 1334.92047 · doi:10.1016/j.bulm.2004.07.004
[127] Sun S, Wheeler MF, Obeyesekere M, Patrick CW Jr (2005) Nonlinear behaviors of cappilary formation in a deterministic angiogenesis model. Nonlinear Anal 63:e2237-e2246 · Zbl 1222.92018 · doi:10.1016/j.na.2005.01.066
[128] Sunyk R, Steinmann P (2003) On higher gradients in continuum-atomistic modelling. Int J Solids Struct 40(24):6877-6896 · Zbl 1137.74311 · doi:10.1016/j.ijsolstr.2003.07.001
[129] Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12(3):210-219 · doi:10.1038/nrc3186
[130] Szot CS, Buchanan CF, Freeman JW, Rylander MN (2011) Collagen 1 hydrogels as a platform for in vitro solid tumor development. Biomaterials 32(32):7905-7912 · doi:10.1016/j.biomaterials.2011.07.001
[131] Szot CS, Buchanan CF, Freeman JW, Rylander MN (2013) In vitro angiogenesis induced by tumor-endothelial cell co-culture in bilayered, collagen I hydrogel bioengineered tumors. Tissue Eng Part C 19(11):864-874 · doi:10.1089/ten.tec.2012.0684
[132] TACC (Texas Advanced Computing Center) (2008-2015). http://www.tacc.utexas.edu/
[133] Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529-1563 · doi:10.1080/01418619608243000
[134] Tan SM, Fox C, Nicholls G (2005) Lecture notes on inverse problems. Physics 707:1-184
[135] Tan WY, Chen CW (1998) Stochastic modeling of carcinogenesis: some new insights. Math Comput Model 28:49-71 · Zbl 0987.92020 · doi:10.1016/S0895-7177(98)00164-2
[136] Tang L, van de Ven AL, Guo D, Andasari V, Cristini V, Li KC, Zhou X (2014) Computational modeling of 3D tumor growth and angiogenesis for chemotherapy evaluation. PloS One 9(1):e83,962 · doi:10.1371/journal.pone.0083962
[137] Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM · Zbl 1074.65013
[138] Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42:563-585 · doi:10.1016/0022-5193(73)90247-6
[139] Tierra G, Guillén-González F (2015) Numerical methods for solving the Cahn-Hlliard equation and its applicability to related energy-based models. Arch Comput Methods Eng 22(2):269-289 · Zbl 1348.82080 · doi:10.1007/s11831-014-9112-1
[140] Travasso RDM, Poire EC, Castro M, Rodriguez-Manzaneque JC, Hernandez-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS One 6(5):1-10 · Zbl 1079.74509
[141] Tustison N, Wintermark M, Durst C, Avants B (2013) Ants andarboles. Multimodal Brain Tumor Segm 47:47-50
[142] Voutouri C, Mpekris F, Papageorgis P, Odysseos AD, Stylianopoulos T (2014) Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors. PloS One 9(8):e104717 · doi:10.1371/journal.pone.0104717
[143] Van der Giessen E, Needleman A (1995) Discrete dislocation plasticity: a simple planar model. Model Simul Mater Sci Eng 3(5):689 · doi:10.1088/0965-0393/3/5/008
[144] Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359-407 · doi:10.1146/annurev.genet.39.110304.095751
[145] Wang R, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001 · doi:10.1088/1478-3975/9/5/055001
[146] Wang Z, Birc CM, Zhang L, Sagotsky J, Deisboeck TS (2009) Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinformatics 25(18):23892396 · doi:10.1093/bioinformatics/btp416
[147] Wang Z, Birch CM, Deisboeck TS (2008) Cross-scale sensitivity analysis of a non-small cell lung cancer model: linking molecular signaling properties to cellular behavior. Biosystems 92(3):249-258 · doi:10.1016/j.biosystems.2008.03.002
[148] Wang Z, Zhang L, Sagotsky J, Deisboeck TS (2007) Simulating non-small cell lung cancer with a multiscale agent-based model. Theor Biol Med Model 4:50 · doi:10.1186/1742-4682-4-50
[149] Winkler R (2003) An introduction to bayesian inference and decision. Probabilistic Publishing, Sugar Land, Texas · Zbl 1334.92047
[150] Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11(7):512-522 · doi:10.1038/nrc3080
[151] Wise SM, Lowengrub JS, Cristini V (2011) An adaptive multigrid algorithm for simulating solid tumor growth using mixture models. Math Comput Model 53:1-20 · Zbl 1211.65123 · doi:10.1016/j.mcm.2010.07.007
[152] Wise SM, Lowengrub JS, Frieboes H, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth—I: model and numerical method. J Theor Biol 253:524-543 · Zbl 1398.92135 · doi:10.1016/j.jtbi.2008.03.027
[153] Wu M, Frieboes HB, McDougall SR, Chaplain MA, Cristini V, Lowengrub J (2013) The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. J Theor Biol 320:131-151 · Zbl 1406.92330 · doi:10.1016/j.jtbi.2012.11.031
[154] Xiao S, Belytschko T (2004) A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng 193(17):1645-1669 · Zbl 1079.74509 · doi:10.1016/j.cma.2003.12.053
[155] Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, Princeton · Zbl 1210.65002
[156] Zhang S, Khare R, Lu Q, Belytschko T (2007) A bridging domain and strain computation method for coupled atomistic-continuum modelling of solids. Int J Numer Methods Eng 70(8):913-933 · Zbl 1194.74491 · doi:10.1002/nme.1895
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.