×

Mass distributions of two-dimensional extreme-value copulas and related results. (English) Zbl 1359.62217

Summary: Working with Markov kernels (conditional distributions) and right-hand derivatives \(D^+A\) of Pickands dependence functions \(A\) we study the way two-dimensional extreme-value copulas (EVCs) \(C_A\) distribute mass. Underlining the usefulness of working directly with \(D^+A\), we give first an alternative simple proof of the fact that EVCs with piecewise linear \(A\) can be expressed as weighted geometric mean of some EVCs whose dependence functions \(A\) have at most two edges and present a generalization of this result. After showing that the discrete component of the Markov kernel of \(C_A\) concentrates its mass on the graphs of some increasing homeomorphisms \(f_t\), we determine which EVC assigns maximum mass to the union of the graphs of \(f_{t_{1}},\dots ,f_{t_{N}}\), derive the absolutely continuous component of an arbitrary EVC \(C_A\) and deduce that the minimum copula \(M\) is the only (purely) singular EVC. Additionally, we prove the existence of EVCs \(C_A\) which, despite their simple analytic form, exhibit the following surprisingly singular behavior: the discrete, the absolutely continuous and the singular component of the Lebesgue decomposition of the Markov kernel \(K_{C_{A}}(x,\cdot)\) of \(C_A\) have full support \([0,1]\) for every \(x\in [0,1]\).

MSC:

62H20 Measures of association (correlation, canonical correlation, etc.)
62G32 Statistics of extreme values; tail inference
60E05 Probability distributions: general theory
26A30 Singular functions, Cantor functions, functions with other special properties
Full Text: DOI

References:

[1] Balakrishnan, N., Lai, Ch.-D.: Continuous bivariate distributions. Springer, Dordrecht (2009) · Zbl 1267.62028
[2] Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of extremes: theory and applications. Wiley series in probability and statistics. Wiley, Chichester (2004) · Zbl 1070.62036 · doi:10.1002/0470012382
[3] Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Springer, New York (2011) · Zbl 1220.46002
[4] Bücher, A., Dette, H., Volgushev, S.: New estimators of the Pickands dependence function and a test for extreme-value dependence. Ann. Stat. 39, 1963-2006 (2011) · Zbl 1306.62087 · doi:10.1214/11-AOS890
[5] Bücher, A., Kojadinovic, I.: An overview of nonparametric tests of extreme-value dependence and of some related statistical procedures. In: Dey, D., Yan, J. (eds.) Crc Press Inc, pp. 377-398 (2016) · Zbl 1365.62174
[6] Capéraà, P., Fougères, A.-L., Genest, C.: A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84, 567-577 (1997) · Zbl 1058.62516 · doi:10.1093/biomet/84.3.567
[7] de Haan, L., Resnick, S.I.: Limit theory for multivariate sample extremes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40, 317-337 (1977) · Zbl 0375.60031 · doi:10.1007/BF00533086
[8] Durante, F., Sempi, C.: Principles of copula theory. CRC/Chapman & Hall, Boca Raton (2015) · Zbl 1380.62008 · doi:10.1201/b18674
[9] Elstrodt, J.: Mass- und Integrationstheorie. Springer, Berlin (1999) · Zbl 0861.28001 · doi:10.1007/978-3-662-08528-8
[10] Falk, M., Häsler, J., Reiss, R.D.: Laws of small numbers: extremes and rare events. Springer Basel (2011) · Zbl 1213.62082
[11] Fernández-Sánchez, J., Viader, P., Paradis, J., Díaz Carrillo, M.: A singular function with a non-zero finite derivative. Nonlinear Anal-Theor 15, 5010-5014 (2012) · Zbl 1248.26010 · doi:10.1016/j.na.2012.04.015
[12] Fernández-Sánchez, J., Trutschnig, W.: Singularity aspects of Archimedean copulas. J. Math. Anal. Appl. 432, 103-113 (2015) · Zbl 1329.62247 · doi:10.1016/j.jmaa.2015.06.036
[13] Fernández-Sánchez, J., Trutschnig, W.: Conditioning based metrics on the space of multivariate copulas and their interrelation with uniform and levelwise convergence and Iterated Function Systems. J. Theor. Probab. 28, 1311-1336 (2015) · Zbl 1329.62269 · doi:10.1007/s10959-014-0541-4
[14] Ghoudi, K., Khoudraji, A., Rivest, L.-P.: Propriétés statistiques des copules de valeurs extrmes bidimensionnelles. Canad. J. Statist. 26, 187-197 (1998) · Zbl 0899.62071 · doi:10.2307/3315683
[15] Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin (2007) · Zbl 1139.52001
[16] Gudendorf, G., Segers, J.: Extreme-value copulas. In: Jaworski, P., Durante, F., Härdle, W., Rychlik, T. (eds.) Copula theory and its applications, volume 198 of Lecture Notes in Statistics Proceedings, pp. 127-145. Springer, Berlin (2010) · Zbl 1248.26010
[17] Guillotte, S., Perron, F.: Polynomial Pickands functions. Bernoulli 22, 214-241 (2016) · Zbl 1388.62142 · doi:10.3150/14-BEJ656
[18] Hewitt, E., Stromberg, K.: Real and abstract analysis, a modern treatment of the theory of functions of a real variable. Springer, New York (1965) · Zbl 0137.03202
[19] Hürlimann, W.: Hutchinson-Lai’s conjecture for bivariate extreme value copulas. Stat. Probabil. Lett. 61, 191-198 (2003) · Zbl 1101.62340 · doi:10.1016/S0167-7152(02)00349-8
[20] Hutchinson, T.P., Lai, C.D.: Continuous bivariate distributions, emphasizing applications. Rumsby Scientific, Adelaide (1990) · Zbl 1170.62330
[21] Kallenberg, O.: Foundations of modern probability. Springer, New York (1997) · Zbl 0892.60001
[22] Kannan, R., Krueger, C.K.: Advanced analysis on the real line. Springer Verlag, New York (1996) · Zbl 0855.26001
[23] Klenke, A.: Probability theory - a comprehensive course. Springer, Berlin (2007) · Zbl 1141.60001
[24] Lange, K.: Decompositions of substochastic transition functions. Proc. Amer. Math. Soc. 37, 575-580 (1973) · Zbl 0232.60041 · doi:10.1090/S0002-9939-1973-0314124-4
[25] Longin, F., Solnik, B.: Extreme correlation of international equity markets. J. Financ. 56, 649-676 (2001) · doi:10.1111/0022-1082.00340
[26] Mai, J.F., Scherer, M.: Bivariate extreme-value copulas with discrete Pickands dependence measure. Extremes 14, 311-324 (2011) · Zbl 1329.62270 · doi:10.1007/s10687-010-0112-8
[27] McNeil, A., Frey, R., Embrechts, P.: Quantitative risk management. Princeton University Press, New Jersey (2005) · Zbl 1089.91037
[28] Nelsen, R.B.: An introduction to copulas. Springer Series in Statistics, New York (2006) · Zbl 1152.62030
[29] Pickands, J.: Multivariate extreme value distributions (1981) · Zbl 0518.62045
[30] Pollard, D.: A user’s guide to measure theoretic probability. Cambridge University Press (2001) · Zbl 0992.60001
[31] Rudin, W.: Real and complex analysis. McGraw-Hill, New York (1966) · Zbl 0142.01701
[32] Salvadori, G., De Michele, C., Kottegoda, N.T., Rosso, R.: Extremes in nature - an approach using copulas. Springer, Dordrecht (2007)
[33] Segers, J.: Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18, 764-782 (2012) · Zbl 1243.62066 · doi:10.3150/11-BEJ387
[34] Schreyer, M., Paulin, R., Trutschnig, W.: On the exact region determined by Kendall’s tau and Spearman’s rho. to appear in Journal of the Royal Statistical Society, Series B, 2016, preprint on arXiv available under arXiv:1502.04620 · Zbl 1414.62202
[35] Tawn, J.A.: Bivariate extreme value theory: models and estimation. Biometrika 75, 397-415 (1988) · Zbl 0653.62045 · doi:10.1093/biomet/75.3.397
[36] Trutschnig, W., Fernández-Sánchez, J.: Idempotent and multivariate copulas with fractal support. J. Stat. Plan. Infer. 142, 3086-3096 (2012) · Zbl 1348.60020 · doi:10.1016/j.jspi.2012.06.012
[37] Trutschnig, W., Fernández-Sánchez, J.: Copulas with continuous, strictly increasing singular conditional distribution functions. J. Math. Anal. Appl. 410, 1014-1027 (2014) · Zbl 1307.60007 · doi:10.1016/j.jmaa.2013.09.032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.