×

Super-fast multipole method for power frequency electric field in substations. (English) Zbl 1358.78078

Summary: Purpose{ } - The purpose of this study is to calculate the frequency electric field in substation.
Design/methodology/approach{ } - The paper proposes a novel fast multipole method (FMM) called Super-FMM to solve the PFEF problems in substations. The paper substitutes the original approaches for analytic expansions and translations through equivalent density representations.
Findings{ } - The paper shows that the Super-FMM is more efficient in terms of the complexity of its storage spaces and computational costs compared with the best-known FMM when placed under scenarios with exactly the same error rates. Research limitations/implications{ } - Using the fast Fourier transform algorithm can further improve the optimization algorithm and computational efficiency.
Originality/value{ } - A novel FMM called Super-FMM is proposed, which has a structure similar to that of the adaptive FMM algorithm, but the paper substitutes the original approaches for analytic expansions and translations through equivalent density representations.

MSC:

78M15 Boundary element methods applied to problems in optics and electromagnetic theory
65N38 Boundary element methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Brebbia, C.A. , Telles, J.C.F. and Wrobel, L.C. (1984), Boundary-Element Techniques, Springer, Berlin. · Zbl 0556.73086
[2] Buchau, A. and Rucker, W.M. (2002), ”Preconditioned fast adaptive multipole boundary-element method”, IEEE Transactions on Magnetics, Vol. 38 No. 2. · Zbl 1358.78078 · doi:10.1108/COMPEL-01-2013-0027
[3] Buchau, A. , Huber, C.J. , Rieger, W. and Rucker, W.M. (2000), ”Fast BEM computations with the adaptive multilevel fast multipole method”, IEEE Transactions on Magnetics, Vol. 36 No. 4, pp. 680-684. , · Zbl 1358.78078 · doi:10.1108/COMPEL-01-2013-0027
[4] Greengard, L. and Rokhlin, V. (1987), ”A fast algorithm for particle simulations”, Journal of Computational Physics, Vol. 73, pp. 325-348. , · Zbl 0629.65005 · doi:10.1108/COMPEL-01-2013-0027
[5] Greengard, L. , Rokhlin, V. (1997), ”A new version of the fast multipole method for the Laplace equation in three dimensions”, Acta Numerica, September 17, pp. 229-269. · Zbl 0889.65115
[6] Hamayer, K. , Belmans, R. and Hanish, R. (1995), ”Computation of the field quantities excited by high-voltage lines”, Proc. Conf. on Computation of Electromagnetic Fields (COMPUMAG), Berlin, 10-13 July, pp. 460-461.
[7] Krajewski, W. (1997), ”BEM analysis of electric field excited by overhead HV lines erected in built-up areas”, IEE Proc., Sci. Meas. Technol., Vol. 144 No. 2, pp. 81-86. · Zbl 1358.78078 · doi:10.1108/COMPEL-01-2013-0027
[8] Krajewski, W. (1998), 3-D Model of the Electric Field Excited by Overhead HV Lines, Arch. Elektrotech., Haifa.
[9] Krajewski, W. (2004), ”Numerical modelling of the electric field in HV substations”, IEE Proc. - Sci. Meas. Technol., Vol. 151 No. 4.
[10] Kumari, M.S. and Maheswarapu, S. (2010), ”Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution”, International Journal of Electrical Power & Energy Systems, Vol. 32 No. 6, pp. 736-742. , · Zbl 1358.78078 · doi:10.1108/COMPEL-01-2013-0027
[11] Kumbhar, G.B. and Mahajan, S.M. (2011), ”Analysis of short circuit and inrush transients in a current transformer using a field-circuit coupled FE formulation”, International Journal of Electrical Power & Energy Systems, Vol. 33 No. 8, pp. 1361-1367. , · Zbl 1358.78078 · doi:10.1108/COMPEL-01-2013-0027
[12] Lexing, Y. , George, B. and Denis, Z. (2004), ”A kernel-independent adaptive fast multipole algorithm in two and three dimensions”, Journal of Computational Physics, Vol. 196, pp. 591-626. , · Zbl 1053.65095 · doi:10.1108/COMPEL-01-2013-0027
[13] Oshiro, M. , Tanaka, K. , Uehara, A. , Senjyu, T. , Miyazato, Y. , Yona, A. and Funabashi, T. (2010), ”Optimal voltage control in distribution systems with coordination of distribution installations”, International Journal of Electrical & Energy System, Vol. 32 No. 10, pp. 1125-1134. , · Zbl 1358.78078 · doi:10.1108/COMPEL-01-2013-0027
[14] Popov, V. and Power, H. (2001), ”An O(N) Taylor series multipole boundary element method for three-dimensional elasticity problems”, Engineering Analysis with Boundary Elements, Vol. 25, pp. 7-18. , · Zbl 0994.74080 · doi:10.1108/COMPEL-01-2013-0027
[15] Rjasanow, S. and Steinbach, O. (2007), The Fast Solution of Boundary Integral Equations, Springer, New York, NY. · Zbl 1119.65119
[16] Talaat, H.E.A. , Abdennour, A. and Al-Sulaiman, A.A. (2010), ”Design and experimental investigation of a decentralized GA-optimized neuro-fuzzy power system stabilizer”, International Journal of Electrical Power & Energy Systems, Vol. 32 No. 7, pp. 751-759. , · Zbl 1358.78078 · doi:10.1108/COMPEL-01-2013-0027
[17] Zhanlong, Z. , Jun, D. , Dong-Ping, X. , Wei, H. and Ju, T. (2010), ”An adaptive fast multipole higher order boundary element method for power frequency electric field of substation”, Chin. Phys. Lett., Vol. 27 No. 3. · Zbl 1358.78078 · doi:10.1108/COMPEL-01-2013-0027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.