×

The inverse problem of a mixed Liénard-type nonlinear oscillator equation from symmetry perspective. (English) Zbl 1358.70022

Summary: In this paper, we discuss the inverse problem for a mixed Liénard-type nonlinear oscillator equation \[ \ddot{x}+f(x)\dot{x}^2+g(x)\dot{x}+h(x)=0, \] where \(f(x)\), \(g(x)\) and \(h(x)\) are arbitrary functions of \(x\). Very recently, we have reported the Lie point symmetries of this equation. By exploiting the interconnection between Jacobi last multiplier, Lie point symmetries and Prelle-Singer procedure, we construct a time-independent integral for the case exhibiting maximal symmetry from which we identify the associated conservative nonstandard Lagrangian and Hamiltonian functions. The classical dynamics of the nonlinear oscillator is also discussed, and certain special properties including isochronous oscillations are brought out.

MSC:

70H03 Lagrange’s equations
70H05 Hamilton’s equations
34A55 Inverse problems involving ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)

References:

[1] Goldstein H., Poole C.P. Jr, Safko J.L.: Classical Mechanics. Pearson Education, Gurgaon (2011) · Zbl 1132.70001
[2] Greiner W.: Classical Mechanics: Systems of Particles and Hamiltonian Dynamics. Springer, New York (2004)
[3] Arnold V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978) · Zbl 0386.70001 · doi:10.1007/978-1-4757-1693-1
[4] Carinena J.F., Ranada M.F., Santander F.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703 (2005) · Zbl 1110.37051 · doi:10.1063/1.1920287
[5] Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: Unusual Liénard-type nonlinear oscillator. Phys. Rev. E 72, 066203 (2005) · Zbl 1186.34046 · doi:10.1103/PhysRevE.72.066203
[6] Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. J. Math. Phys. 48, 032701 (2007) · Zbl 1137.70344 · doi:10.1063/1.2711375
[7] Gladwin Pradeep R., Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: Nonstandard conserved Hamiltonian structures in dissipative/damped systems: nonlinear generalizations of damped harmonic oscillator. J. Math. Phys. 50, 052901 (2009) · Zbl 1187.34046 · doi:10.1063/1.3126493
[8] Mathews P.M., Lakshmanan M.: On a unique nonlinear oscillator. Q. Appl. Math. 32, 215 (1974) · Zbl 0284.34046
[9] Musielak Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A: Math. Theor. 41, 055205 (2008) · Zbl 1136.37044 · doi:10.1088/1751-8113/41/5/055205
[10] Musielak Z.E., Roy D., Swift L.D.: Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients. Chaos Solitons Fractals 38, 894 (2008) · Zbl 1146.70336 · doi:10.1016/j.chaos.2007.06.076
[11] Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: On the general solution for the modified Emden-type equation \[{\ddot{x}+\alpha x \dot{x}+\beta x^3=0}\] x¨+αxx˙+βx3=0. J. Phys. A: Math. Theor. 40, 4717 (2007) · Zbl 1128.34003 · doi:10.1088/1751-8113/40/18/003
[12] Chithiika Ruby V., Senthilvelan M., Lakshmanan M.: Exact quantization of a PT-symmetric (reversible) Liénard type nonlinear oscillator. J. Phys. A: Math. Theor. 45, 382002 (2012) · Zbl 1252.81055 · doi:10.1088/1751-8113/45/38/382002
[13] Chithiika Ruby V., Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: Removal of ordering ambiguity for a class of position dependent mass quantum systems with an application to the quadratic Lienard type nonlinear oscillators. J. Math. Phys. 56, 012103 (2015) · Zbl 1308.81074 · doi:10.1063/1.4905167
[14] Choudhury A.G., Guha P.: Quantization of the Liénard II equation and Jacobi’s last multiplier. J. Phys. A: Math. Theor. 46, 165202 (2013) · Zbl 1276.81078 · doi:10.1088/1751-8113/46/16/165202
[15] Gubbiottia G., Nucci M.C.: Noether symmetries and the quantization of a Liénard-type nonlinear oscillator. J. Nonlinear Math. Phys. 21, 248-264 (2014) · Zbl 1421.81038 · doi:10.1080/14029251.2014.905299
[16] Corichi A., Ryan M.P. Jr: Quantization of non-standard Hamiltonian systems. J. Phys. A: Math. Gen. 30, 3553 (1997) · Zbl 0933.37073 · doi:10.1088/0305-4470/30/10/029
[17] Choudhury A.G., Guha P., Khanrad B.: On the Jacobi last multiplier, integrating factors and the Lagrangian formulation of differential equations of the Painlevé-Gambier classification. J. Math. Anal. Appl. 360, 651-664 (2009) · Zbl 1183.34138 · doi:10.1016/j.jmaa.2009.06.052
[18] Jacobi C.G.J.: Sul principio dellultimo moltiplicatore e suo uso come nuovo principio generale di meccanica. Giornale Arcadico di Scienze Lettere ed Arti 99, 129 (1844)
[19] Jacobi, C.G.J.: Vorlesungen über Dynamik. Nebst fünf hinterlassenen Abhandlungen desselben herausgegeben von A. Clebsch, Druck und Verlag von Georg Reimer, Berlin (1886)
[20] Nucci M.C., Leach P.G.L.: Lagrangians galore. J. Math. Phys. 48, 123510 (2007) · Zbl 1153.81413 · doi:10.1063/1.2821612
[21] Nucci M.C., Leach P.G.L.: The Jacobi last multiplier and its applications in mechanics. Phys. Scr. 78, 065011 (2008) · Zbl 1158.70008 · doi:10.1088/0031-8949/78/06/065011
[22] Nucci M.C.: Jacobi last multiplier and Lie symmetries: a novel application of an old relationship. J. Nonlinear Math. Phys. 12, 284 (2005) · Zbl 1080.34003 · doi:10.2991/jnmp.2005.12.2.9
[23] Chandrasekar V.K., Pandey S.N., Senthilvelan M., Lakshmanan M.: A simple and unified approach to identify integrable nonlinear oscillators and systems. J. Math. Phys. 47, 023508 (2006) · Zbl 1111.34003 · doi:10.1063/1.2171520
[24] Mohanasubha R., Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: Interplay of symmetries, null forms, Darboux polynomials, integrating factors and Jacobi multipliers in integrable second-order differential equations. Proc. R. Soc. A 470, 20130656 (2014) · Zbl 1359.34004 · doi:10.1098/rspa.2013.0656
[25] Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations. Proc. R. Soc. A 461, 2451 (2005) · Zbl 1186.34046 · doi:10.1098/rspa.2005.1465
[26] Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: On the complete integrability and linearization of nonlinear ordinary differential equations. II. Third-order equations. Proc. R. Soc. A 462, 1831-1852 (2006) · Zbl 1149.34319 · doi:10.1098/rspa.2005.1648
[27] Tiwari, A.K., Pandey, S.N., Senthilvelan, M., Lakshmanan, M.: On the complete Lie point symmetries classification of the mixed quadratic-linear Liénard type equation \[{\ddot{x}+f(x)\dot{x}^2+g(x)\dot{x}+h(x)=0}\] x¨+f(x)x˙2+g(x)x˙+h(x)=0. Nonlinear Dyn. 82, 1953-1968 (2015) · Zbl 1437.34039
[28] Gladwin Pradeep R., Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: On certain new integrable second order nonlinear differential equations and their connection with two dimensional Lotka-Volterra system. J. Math. Phys. 51, 033519 (2010) · Zbl 1309.34007 · doi:10.1063/1.3327838
[29] Chandrasekar V.K., Senthilvelan M., Lakshmanan M.: A unification in the theory of linearization of second order nonlinear ordinary differential equations. J. Phys. A: Math. Gen. 39, L69-L76 (2006) · Zbl 1146.34312 · doi:10.1088/0305-4470/39/3/L01
[30] Olver P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986) · Zbl 0588.22001 · doi:10.1007/978-1-4684-0274-2
[31] Mohanasubha R., Sabiya Shakila M.I., Senthilvelan M.: On the linearization of isochronous centre of a modified Emden equation with linear external forcing. Commun. Nonlinear Sci. Numer. Simul. 19, 799-806 (2014) · Zbl 1457.34048 · doi:10.1016/j.cnsns.2013.08.005
[32] Musielak Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42, 2645-2652 (2009) · Zbl 1198.34057 · doi:10.1016/j.chaos.2009.03.171
[33] Cieślinski J.L., Nikiciuk T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A 43, 175205 (2010) · Zbl 1273.70024 · doi:10.1088/1751-8113/43/17/175205
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.