×

Fixed-parameter algorithms for cochromatic number and disjoint rectangle stabbing via iterative localization. (English) Zbl 1358.68313

Summary: Given a permutation \(\pi\) of \(\{1,\dots,n\}\) and a positive integer \(k\), can \(\pi\) be partitioned into at most \(k\) subsequences, each of which is either increasing or decreasing? We give an algorithm with running time \(2^{O(k^2\log k)}n^{O(1)}\) that solves this problem, thereby showing that it is fixed parameter tractable. This NP-complete problem is equivalent to deciding whether the cochromatic number of a given permutation graph on \(n\) vertices is at most \(k\). Our algorithm solves in fact a more general problem: within the mentioned running time, it decides whether the cochromatic number of a given perfect graph on \(n\) vertices is at most \(k\).
To obtain our result we use a combination of two well-known techniques within parameterized algorithms: iterative compression and greedy localization. Consequently we name this combination “iterative localization”. We further demonstrate the power of this combination by giving an algorithm with running time \(2^{O(k^2\log k)}n\log n\) that decides whether a given set of \(n\) non-overlapping axis-parallel rectangles can be stabbed by at most \(k\) of a given set of horizontal and vertical lines.

MSC:

68W05 Nonnumerical algorithms
05A05 Permutations, words, matrices
05C15 Coloring of graphs and hypergraphs
05C85 Graph algorithms (graph-theoretic aspects)
68Q25 Analysis of algorithms and problem complexity
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
Full Text: DOI

References:

[1] Berge, C., Färbung von Graphen, deren sämtliche bzw. deren ungeraden Kreise starr sind (Zusammenfassung), Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur., Reihe, 10, 114 (1961)
[2] Brandstädt, A., Partitions of graphs into one or two independent sets and cliques, Discrete Mathematics, 152, 47-54 (1996) · Zbl 0853.68140
[3] Brandstädt, A.; Kratsch, D., On the partition of permutations into increasing or decreasing subsequences, Elektron. Inform. Kybernet., 22, 263-273 (1986) · Zbl 0616.05002
[4] Brandstädt, A.; Le, V. B.; Spinrad, J. P., Graph Classes: A Survey (1999), SIAM · Zbl 0919.05001
[5] Chen, J.; Liu, Y.; Lu, S.; OʼSullivan, B.; Razgon, I., A fixed-parameter algorithm for the directed feedback vertex set problem, J. ACM, 55 (2008) · Zbl 1325.68104
[6] Chen, J.; Fomin, F. V.; Liu, Y.; Lu, S.; Villanger, Y., Improved algorithms for feedback vertex set problems, J. Comput. Syst. Sci., 74, 1188-1198 (2008) · Zbl 1152.68055
[7] Chudnovsky, M.; Cornuejols, G.; Liu, X.; Seymour, P.; Vuskovic, K., Recognizing Berge graphs, Combinatorica, 25, 143-186 (2005) · Zbl 1089.05027
[8] Chudnovsky, M.; Robertson, N.; Seymour, P. D.; Thomas, R., The strong perfect graph theorem, Ann. Math., 164, 51-229 (2006) · Zbl 1112.05042
[9] Gaur, T. I.D. R.; Krishnamurti, R., Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem, Journal of Algorithms, 43, 138-152 (2002) · Zbl 1005.68179
[10] Dehne, F. K.H. A.; Fellows, M. R.; Rosamond, F. A.; Shaw, P., Greedy localization, iterative compression, modeled crown reductions: New FPT techniques, an improved algorithm for set splitting, and a novel \(2k\) kernelization for vertex cover, (IWPEC. IWPEC, Springer LNCS, vol. 3162 (2004)), 271-280 · Zbl 1104.68516
[11] Dom, M.; Fellows, M. R.; Rosamond, F. A., Parameterized complexity of stabbing rectangles and squares in the plane, (WALCOM. WALCOM, Springer LNCS, vol. 5431 (2009)), 298-309 · Zbl 1211.68465
[12] Dom, M.; Sikdar, S., The parameterized complexity of the rectangle stabbing problem and its variants, (FAW. FAW, Springer LNCS, vol. 5059 (2008)), 288-299 · Zbl 1143.68617
[13] Downey, R. D.; Fellows, M. R., Parameterized Complexity (1999), Springer-Verlag · Zbl 0914.68076
[14] Erdős, P.; Gimbel, J., Some problems and results in cochromatic theory, (Quo Vadis, Graph Theory? (1993), North-Holland: North-Holland Amsterdam), 261-264 · Zbl 0791.05038
[15] Erdős, P.; Gimbel, J.; Kratsch, D., Extremal results in cochromatic and dichromatic theory, Journal of Graph Theory, 15, 579-585 (1991) · Zbl 0743.05047
[16] Erdős, P.; Szekeres, G., A combinatorial problem in geometry, Compositio Mathematica, 2, 463-470 (1935) · Zbl 0012.27010
[17] Fishburn, P. C., Interval Orders and Interval Graphs: A Study of Partially Ordered Sets (1985), Wiley · Zbl 0551.06001
[18] Flum, J.; Grohe, M., Parameterized Complexity Theory (2006), Springer-Verlag · Zbl 1143.68016
[19] Fomin, F. V.; Iwama, K.; Kratsch, D.; Kaski, P.; Koivisto, M.; Kowalik, L.; Okamoto, Y.; van Rooij, J.; Williams, R., 08431 open problems - moderately exponential time algorithms, (Fomin, F. V.; Iwama, K.; Kratsch, D., Moderately Exponential Time Algorithms. Moderately Exponential Time Algorithms, Dagstuhl Seminar Proceedings, vol. 08431 (2008), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik Germany)
[20] Fomin, F. V.; Kratsch, D.; Novelli, J.-C., Approximating minimum cocolorings, Inf. Process. Lett., 84, 285-290 (2002) · Zbl 1042.68091
[21] Frank, A., On chain and antichain families of a partially ordered set, J. Comb. Theory, Ser. B, 29, 176-184 (1980) · Zbl 0443.06003
[22] Giannopoulos, P.; Knauer, C.; Rote, G.; Werner, D., Fixed-parameter tractability and lower bounds for stabbing problems, (Proceedings of the 25th European Workshop on Computational Geometry (EuroCG) (2009)), 281-284
[23] Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, vol. 57 (2004), Elsevier · Zbl 1050.05002
[24] Grötschel, M.; Lovász, L.; Schrijver, A., Polynomial algorithms for perfect graph, Annals of Discrete Mathematics, 21, 325-356 (1984) · Zbl 0554.05041
[25] Hassin, R.; Megiddo, N., Approximation algorithms for hitting objects with straight lines, Discrete Applied Mathematics, 30, 29-42 (1991) · Zbl 0800.68619
[26] Heggernes, P.; Kratsch, D.; Lokshtanov, D.; Raman, V.; Saurabh, S., Fixed-parameter algorithms for Cochromatic Number and Disjoint Rectangle Stabbing, (SWAT. SWAT, Springer LNCS, vol. 6139 (2010)), 334-345 · Zbl 1285.68207
[27] Jia, W.; Zhang, C.; Chen, J., An efficient parameterized algorithm for \(m\)-set packing, J. Algorithms, 50, 106-117 (2004) · Zbl 1068.68171
[28] Kovaleva, S.; Spieksma, F. C.R., Approximation algorithms for rectangles tabbing and interval stabbing problems, SIAM J. Discrete Mathematics, 20, 748-768 (2006) · Zbl 1127.68117
[29] Lovász, L., A characterization of perfect graphs, J. Comb. Theory, Ser. B, 13, 95-98 (1972) · Zbl 0241.05107
[30] Mahadev, N.; Peled, U., Threshold Graphs and Related Topics, vol. 56 (1995), North-Holland · Zbl 0852.05001
[31] Niedermeier, R., Invitation to Fixed Parameter Algorithms, Oxford Lecture Series in Mathematics and Its Applications (2006), Oxford University Press: Oxford University Press USA · Zbl 1095.68038
[32] Reed, B. A.; Smith, K.; Vetta, A., Finding odd cycle transversals, Oper. Res. Lett., 32, 299-301 (2004) · Zbl 1052.05061
[33] Wagner, K., Monotonic coverings of finite sets, Elektron. Inform. Kybernet., 20, 633-639 (1984) · Zbl 0566.68041
[34] Xu, G.; Xu, J., Constant approximation algorithms for rectangle stabbing and related problems, Theory of Computing Systems, 40, 187-204 (2007) · Zbl 1107.68123
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.