×

A Fisher-Rao metric for curves using the information in edges. (English) Zbl 1357.68253

Summary: Two curves which are close together in an image are indistinguishable given a measurement, in that there is no compelling reason to associate the measurement with one curve rather than the other. This observation is made quantitative using the parametric version of the Fisher-Rao metric. A probability density function for a measurement conditional on a curve is constructed. The distance between two curves is then defined to be the Fisher-Rao distance between the two conditional pdfs. A tractable approximation to the Fisher-Rao metric is obtained for the case in which the measurements are compound in that they consist of a point \({\mathbf {x}}\) and an angle \(\alpha\) which specifies the direction of an edge at \({\mathbf {x}}\). If the curves are circles or straight lines, then the approximating metric is generalized to take account of inlying and outlying measurements. An estimate is made of the number of measurements required for the accurate location of a circle in the presence of outliers. A Bayesian algorithm for circle detection is defined. The prior density for the algorithm is obtained from the Fisher-Rao metric. The algorithm is tested on images from the CASIA iris interval database.

MSC:

68T45 Machine vision and scene understanding
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

CASIA Iris
Full Text: DOI

References:

[1] Aguado, A.S., Montiel, M.E., Nixon, M.S.: On using directional information for parameter space decomposition in ellipse detection. Pattern Recognit. 29, 369-381 (1996) · doi:10.1016/0031-3203(94)00096-4
[2] Amari, S.-I.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics. Springer, New York (1985) · Zbl 0559.62001 · doi:10.1007/978-1-4612-5056-2
[3] Balasubramanian, V.: Statistical inference, Occam’s razor and statistical mechanics on the space of probability distributions. Neural Comput. 9, 349-368 (1997) · Zbl 0870.62006 · doi:10.1162/neco.1997.9.2.349
[4] Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13, 111-122 (1981) · Zbl 0454.68112 · doi:10.1016/0031-3203(81)90009-1
[5] Bonci, A., Leo, T., Longhi, S.: A Bayesian approach to the Hough transform for line detection. IEEE Trans. Syst. Man Cybern. Part A 35, 945-955 (2005) · doi:10.1109/TSMCA.2005.853481
[6] CASIA Iris Image Database: http://biometrics.idealtest.org (2010) · Zbl 0870.62006
[7] Ceolin, S., Hancock, E.R.: Distinguishing facial expression using the Fisher-Rao metric. In: Proceedings of IEEE Conference on Image Processing (ICIP), pp. 1437-1440 (2010) · Zbl 0063.06420
[8] Ceolin, S.R., Hancock, E.R.: Computing gender difference using Fisher-Rao metric from facial surface normals. In: Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 336-343 (2012)
[9] Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991) · Zbl 0762.94001 · doi:10.1002/0471200611
[10] Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach, 2nd edn. Prentice Hall, Upper Saddle River (2011)
[11] Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Education, Singapore (2008)
[12] Jaynes, E.T.: Probability Theory: The Logic of Science. CUP, New York (2003) · Zbl 1045.62001 · doi:10.1017/CBO9780511790423
[13] Jeffreys, H.: Theory of Probability. Oxford Classics Series. OUP, Oxford (1998) · Zbl 0902.62002
[14] Ji, Q., Haralick, R.M.: An optimal Bayesian Hough transform for line detection. In: Proceedings of the 1999 International Conference on Image Processing, vol. 2, pp. 691-695 (1999)
[15] Kanatani, K.-I.: Statistical Computation for Geometrical Optimization. Elsevier, New York (1996) · Zbl 0851.62078
[16] Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. Commun. Assoc. Comput. Mach. 18, 120-122 (1975) · Zbl 0296.68099
[17] Leavers, V.F.: Which Hough transform? Comput. Vis. Graph. Image Process. 58, 250-264 (1993) · doi:10.1006/cviu.1993.1043
[18] Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, New York (2000) · Zbl 0935.62065
[19] Maybank, S.J.: Detection of image structures using the Fisher information and the Rao metric. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1579-1589 (2004) · doi:10.1109/TPAMI.2004.122
[20] Maybank, S.J.: Application of the Fisher-Rao metric to ellipse detection. Int. J. Comput. Vis. 72, 287-307 (2007) · Zbl 1477.68397 · doi:10.1007/s11263-006-9033-z
[21] Maybank, S.J., Ieng, S., Benosman, R.: A Fisher-Rao metric for paracatadioptric images of lines. Int. J. Comput. Vis. 99, 147-165 (2012). doi:10.1007/s11263-012-0523-x · Zbl 1254.68279 · doi:10.1007/s11263-012-0523-x
[22] Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23, 74-113 (2007) · Zbl 1116.58007 · doi:10.1016/j.acha.2006.07.004
[23] Mio, W., Srivastava, S., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73, 307-324 (2006) · Zbl 1477.68398 · doi:10.1007/s11263-006-9968-0
[24] Olson, C.F.: Constrained Hough transform for curve detection. Comput. Vis. Image Underst. 73, 329-345 (1999) · Zbl 0922.68107 · doi:10.1006/cviu.1998.0728
[25] OpenCV: http://www.docs.opencv.org/modules/imgproc/doc/feature_detection.html#houghcircles (2014). Accessed 20 Feb 2014
[26] Peter, A., Rangarajan, A.: Information geometry for landmark shape analysis: unifying shape representation and deformation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 337-350 (2009) · doi:10.1109/TPAMI.2008.69
[27] Rao, C.: Information and the accuracy obtainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81-91 (1945) · Zbl 0063.06420
[28] Srivastava, A., Jermyn, I., Joshi, S.: Riemannian analysis of probability density functions with applications in vision. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR2007, pp. 1-8 (2007)
[29] Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415-1428 (2011) · doi:10.1109/TPAMI.2010.184
[30] Sundaramoorthi, G., Mennucci, A.C.G., Soatto, S., Yezzi, A.: A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM J. Imaging Sci. 4, 109-145 (2011) · Zbl 1214.93033 · doi:10.1137/090781139
[31] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2011) · Zbl 1219.68009 · doi:10.1007/978-1-84882-935-0
[32] Tatu, A., Lauze, F., Sommer, S., Nielsen, M.: On restricting planar curve evolution to finite dimensional implicit subspaces with non-euclidean metric. J. Math. Imaging Vis. 38, 226-240 (2010) · Zbl 1255.53054 · doi:10.1007/s10851-010-0218-2
[33] Toronto, N., Morse, B.S., Ventura, D., Seppi, K.: (2007) The Hough transform’s explicit Bayesian foundation. In: Proceedings of the 14th International Conference on Image Processing, IV, pp. 377-380 (2007)
[34] Werman, M., Keren, D.: A Bayesian method for fitting parametric and nonparametric models to noisy data. IEEE Trans. Pattern Anal. Mach. Intell. 23, 528-534 (2001) · doi:10.1109/34.922710
[35] Woodford, O.J., Pham, M.-T., Maki, A., Porbet, F., Stenger, B.: Demisting the Hough transform for 3D shape recognition and registration. Int. J. Comput. Vis. 106, 332-341 (2014) · doi:10.1007/s11263-013-0623-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.