×

Uniformly continuous functions and quantization on the Fock space. (English) Zbl 1356.47034

Summary: With a family \((\mu _t)_{t>0}\) of Gaussian probability measures, we consider the scale \((H_t^2)_{>0}\) of \(\mu_t\)-square integrable entire functions on \(\mathbb C^n\). Here, \(t\) plays the role of Planck’s constant. For \(f\) and \(g\) in the space \(\mathrm{BUC}(\mathbb C^n)\) of all bounded and uniformly continuous complex valued functions on \(\mathbb C^n\), we show the asymptotic composition formula \[ \lim\limits_{t\downarrow 0}\| T_f^{(t)}T_g^{(t)}-T^{(t)}_{fg}\|_t=0,\tag{1} \] where \(\|\cdot\|_t\) denotes the norm in \(\mathcal L(H_t^2)\) and \(T_f^{(t)}\) is the Toeplitz operator with symbol \(f\). Different from previously known results (e.g., [D. Borthwick, Contemp. Math. 214, 23–37 (1998; Zbl 0903.58013); the second author, Commun. Math. Phys. 149, No. 2, 415–424 (1992; Zbl 0829.46056)]), neither differentiability nor compact support of the operator symbols is assumed. We provide an example which indicates that (1) in general fails for rapidly oscillating bounded symbols.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
53D50 Geometric quantization
81S10 Geometry and quantization, symplectic methods
Full Text: DOI

References:

[1] Agbor, D., Bauer, W.: Heat flow and an algebra of Toeplitz operators. Integr. Equ. Oper. Theory 81(2), 271-299 (2015) · Zbl 1337.47039 · doi:10.1007/s00020-014-2205-2
[2] Bauer, W.: Berezin-Toeplitz quantization and composition formulas. J. Funct. Anal. 256(10), 3107-3142 (2009) · Zbl 1169.47017 · doi:10.1016/j.jfa.2008.10.002
[3] Bauer, W., Coburn, L.A.: Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation. J. Reine Angew. Math. 703, 225-246 (2015) · Zbl 1326.32035
[4] Bauer, W., Vasilevski, N.: On algebras generated by Toeplitz operators and their representations. (Preprint) · Zbl 1369.47029
[5] Berezin, F.A.: Quantization. Math. USSR Isv. 8(5), 1109-1163 (1974) · Zbl 0312.53049 · doi:10.1070/IM1974v008n05ABEH002140
[6] Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153-174 (1975) · Zbl 1272.53082 · doi:10.1007/BF01609397
[7] Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal-Bargmann space. Trans. Am. Math. Soc. 301, 813-829 (1987) · Zbl 0625.47019 · doi:10.1090/S0002-9947-1987-0882716-4
[8] Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and \[\mathfrak{gl}(n), n \rightarrow \infty\] gl(n),n→∞ limits. Commun. Math. Phys. 165, 281-296 (1994) · Zbl 0813.58026
[9] Borthwick, D.: Microlocal techniques for semiclassical problems in geometric quantization. In: Perspectives on Quantization. Contemp. Mathematics, vol. 214, pp. 23-37. AMS, Providence (1998) · Zbl 0903.58013
[10] Borthwick, D., Lesniewski, A., Upmeier, H.: Non-perturbative deformation quantization of Cartan domains. J. Funct. Anal. 113, 153-176 (1993) · Zbl 0794.46051
[11] Coburn, L.A.: Deformation estimates for Berezin-Toeplitz quantization. Commun. Math. Phys. 149, 415-424 (1992) · Zbl 0829.46056 · doi:10.1007/BF02097632
[12] Coburn, L.A.: The measure algebra of the Heisenberg group. J. Funct. Anal. 161, 509-525 (1999) · Zbl 0921.43001 · doi:10.1006/jfan.1998.3354
[13] Coburn, L.A.: On the Berezin-Toeplitz calculus. Proc. Amer. Math. Soc. 129(11), 3331-3338 (2001) · Zbl 0990.47025 · doi:10.1090/S0002-9939-01-05917-2
[14] Engliš, M.: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227, 211-241 (2002) · Zbl 1010.32002 · doi:10.1007/s002200200634
[15] Klimek, S., Lesniewskii, A.: Quantum Riemann surfaces I: the unit disc. Commun. Math. Phys. 146, 103-122 (1992) · Zbl 0771.46036 · doi:10.1007/BF02099210
[16] Rieffel, M.: Deformation quantization of Heisenberg manifolds. Commun. Math. Phys. 122, 531-562 (1989) · Zbl 0679.46055 · doi:10.1007/BF01256492
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.