×

Linear series on metrized complexes of algebraic curves. (English) Zbl 1355.14007

Summary: A metrized complex of algebraic curves over an algebraically closed field \(\kappa\) is, roughly speaking, a finite metric graph \(\Gamma\) together with a collection of marked complete nonsingular algebraic curves \(C_v\) over \(\kappa\), one for each vertex \(v\) of \(\Gamma\); the marked points on \(C_v\) are in bijection with the edges of \(\Gamma\) incident to \(v\). We define linear equivalence of divisors and establish a Riemann-Roch theorem for metrized complexes of curves which combines the classical Riemann-Roch theorem over \(\kappa\) with its graph-theoretic and tropical analogues from the first author and L. Caporaso [Adv. Math. 240, 1–23 (2013; Zbl 1284.14087)]; the second author and S. Norine [Adv. Math. 215, No. 2, 766–788 (2007; Zbl 1124.05049)]; A. Gathmann and M. Kerber [Math. Z. 259, No. 1, 217–230 (2008; Zbl 1187.14066)] and G. Mikhalkin and I. Zharkov [Contemp. Math. 465, 203–230 (2008; Zbl 1152.14028)], providing a common generalization of all of these results. For a complete nonsingular curve \(X\) defined over a non-Archimedean field \(\mathbb K\), together with a strongly semistable model \(\mathfrak X\) for \(X\) over the valuation ring \(R\) of \(\mathbb K\), we define a corresponding metrized complex \(\mathfrak{CX}\) of curves over the residue field \(\kappa\) of \(\mathbb K\) and a canonical specialization map \(\tau^{\mathfrak {CX}}_\ast\) from divisors on \(X\) to divisors on \(\mathfrak{CX}\) which preserves degrees and linear equivalence. We then establish generalizations of the specialization lemma from the second author [Algebra Number Theory 2, No. 6, 613–653 (2008; Zbl 1162.14018)] and its weighted graph analogue from O. Amini and L. Caporaso [Adv. Math. 240, 1–23 (2013; Zbl 1284.14087)], showing that the rank of a divisor cannot go down under specialization from \(X\) to \(\mathfrak{CX}\). As an application, we establish a concrete link between specialization of divisors from curves to metrized complexes and the theory of limit linear series due to D. Eisenbud and J. Harris [Invent. Math. 85, 337–371 (1986; Zbl 0598.14003)]. Using this link, we formulate a generalization of the notion of limit linear series to curves which are not necessarily of compact type and prove, among other things, that any degeneration of a \(\mathfrak g^r_d\) in a regular family of semistable curves is a limit \(\mathfrak g^r_d\) on the special fiber.

MSC:

14C20 Divisors, linear systems, invertible sheaves
14H10 Families, moduli of curves (algebraic)

References:

[1] Amini, O.: Equidistribution of Weierstrass points on curves over non-Archimedean fields, in preparation · Zbl 0598.14016
[2] Amini, O., Baker, M.: Limit linear series for a generic chain of genus one curves, in preparation
[3] Amini, O.: Reduced divisors and embeddings of tropical curves. Trans. Am. Math. Soc. 365(9), 4851-4880 (2013) · Zbl 1405.14139 · doi:10.1090/S0002-9947-2013-05789-3
[4] Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta. Preprint arxiv:1303.4812 · Zbl 1327.14117
[5] Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms II: Tropical curves and metrized complexes. Preprint arxiv:1404.3390 · Zbl 1312.14138
[6] Amini, O., Caporaso, L.: Riemann-Roch theory for weighted graphs and tropical curves. Adv. Math. 240, 1-23 (2013) · Zbl 1284.14087 · doi:10.1016/j.aim.2013.03.003
[7] Baker, M.: Specialization of linear systems from curves to graphs. Algebra Number Theory 2(6), 613-653 (2008) · Zbl 1162.14018 · doi:10.2140/ant.2008.2.613
[8] Baker, M., Norine, S.: Riemann-Roch and Abel-Jacobi theory on a finite graph. Adv. Math. 215(2), 766-788 (2007) · Zbl 1124.05049 · doi:10.1016/j.aim.2007.04.012
[9] Baker, M., Payne, S., Rabinoff, J.: Non-Archimedean geometry, tropicalization, and metrics on curves. Preprint arXiv:1104.0320v1 · Zbl 1470.14124
[10] Baker, M., Shokrieh, F.: Chip-firing games, potential theory on graphs, and spanning trees. J. Comb. Theory Series A 120(1), 164-182 (2013) · Zbl 1408.05089 · doi:10.1016/j.jcta.2012.07.011
[11] Berkovich, V.G.: Spectral theory and analytic geometry over non-Archimedean fields. In: Proceedings of Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence (1990) · Zbl 0715.14013
[12] Bigas, M.T.I.: Brill-Noether theory for stable vector bundles. Duke Math. J. 62(2), 385-400 (1991) · Zbl 0739.14006 · doi:10.1215/S0012-7094-91-06215-0
[13] Caporaso, L.: Linear series on semistable curves. Int. Math. Res. Not. 13, 2921-2969 (2011) · Zbl 1231.14007
[14] Caporaso, L.: Gonality of algebraic curves and graphs. In: Frühbis-Krüger A, Kloosterman RN, Schütt M (eds) Algebraic and Complex Geometry, Springer Proceedings in Mathematics & Statistics, vol 71. Springer, p 319 (2014) · Zbl 1395.14026
[15] Cartwright, D.: Lifting rank 2 tropical divisors. Preprint http://users.math.yale.edu/dc597/lifting.pdf/ · Zbl 1349.14194
[16] Chinburg, T., Rumely, R.: The capacity pairing. J. für die reine und angewandte Mathematik 434, 1-44 (1993) · Zbl 0756.14013
[17] Cools, F., Draisma, J., Payne, S., Robeva, E.: A tropical proof of the Brill-Noether theorem. Adv. Math. 230(2), 759-776 (2012) · Zbl 1325.14080 · doi:10.1016/j.aim.2012.02.019
[18] Coleman, R.F.: Effective Chabauty. Duke Math. J. 52(3), 765-770 (1985) · Zbl 0588.14015 · doi:10.1215/S0012-7094-85-05240-8
[19] Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publications Mathématiques de l’IHES 36(1), 75-109 (1969) · Zbl 0181.48803 · doi:10.1007/BF02684599
[20] Eisenbud, D., Harris, J.: Limit linear series: basic theory. Invent. Math. 85, 337-371 (1986) · Zbl 0598.14003 · doi:10.1007/BF01389094
[21] Eisenbud, D., Harris, J.: The Kodaira dimension of the moduli space of curves of genus \[{\ge }23\]≥23. Invent. Math. 90(2), 359-387 (1987) · Zbl 0631.14023 · doi:10.1007/BF01388710
[22] Eisenbud, D., Harris, J.: Existence, decomposition, and limits of certain Weierstrass points. Invent. Math. 87(3), 495-515 (1987) · Zbl 0606.14014 · doi:10.1007/BF01389240
[23] Eisenbud, D., Harris, J.: The monodromy of Weierstrass points. Invent. Math. 90(2), 333-341 (1987) · Zbl 0632.14014 · doi:10.1007/BF01388708
[24] Esteves, E.: Linear systems and ramification points on reducible nodal curves. Mathematica Contemporanea 14, 21-35 (1998) · Zbl 0928.14007
[25] Esteves, E., Medeiros, N.: Limit canonical systems on curves with two components. Invent. Math. 149(2), 267-338 (2002) · Zbl 1046.14012 · doi:10.1007/s002220200211
[26] Gathmann, A., Kerber, M.: A Riemann-Roch theorem in tropical geometry. Math. Z. 259(1), 217-230 (2008) · Zbl 1187.14066 · doi:10.1007/s00209-007-0222-4
[27] Harris, J., Morrison, I.: Moduli of Curves. Graduate Texts in Mathematics, vol. 187. Springer, Berlin (1998) · Zbl 0913.14005
[28] Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. Invent. Math. 67, 23-88 (1982) · Zbl 0506.14016 · doi:10.1007/BF01393371
[29] Hartshorne, R.: Algebraic geometry. In: Proceedings of Springer Graduate Texts in Mathematics, p. 52 (1977) · Zbl 0367.14001
[30] Hladký, J., Kràl’, D., Norine, S.: Rank of divisors on tropical curves. J. Comb. Theory. Series B. 120(7), 1521-1538 (2013) · Zbl 1317.14137 · doi:10.1016/j.jcta.2013.05.002
[31] Katz, E., Zureick-Brown, D.: The Chabauty-Coleman bound at a prime of bad reduction and Clifford bounds for geometric rank functions. Compositio Math. 149(11), 1818-1838 (2013) · Zbl 1297.14026 · doi:10.1112/S0010437X13007410
[32] Lorenzini, D.J., Tucker, T.J.: Thue equations and the method of Chabauty-Coleman. Invent. Math. 148(1), 47-77 (2002) · Zbl 1048.11023 · doi:10.1007/s002220100186
[33] Lim, C.M., Payne, S., Potashnik, N.: A note on Brill-Noether thoery and rank determining sets for metric graphs. Int. Math. Res. Not. 23, 5484-5504 (2012) · Zbl 1328.14099
[34] Luo, Y.: Rank-determining sets of metric graphs. J. Comb. Theory. Series A. 118(6), 1775-1793 (2011) · Zbl 1227.05133 · doi:10.1016/j.jcta.2011.03.002
[35] McCallum, W., Poonen, B.: The method of Chabauty and Coleman, June 14, 2010. Preprint http://www-math.mit.edu/poonen/papers/chabauty.pdf, to appear in Panoramas et Synthèses, Société Math. de France · Zbl 1377.11077
[36] Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and Theta functions. Contemporary Mathematics. In: Proceedings of the International Conference on Curves and Abelian Varieties in Honor of Roy Smith’s 65th Birthday, vol. 465, pp. 203-231 (2007) · Zbl 1152.14028
[37] Neeman, A.: The distribution of Weierstrass points on a compact Riemann surface. Ann. Math. 120, 317-328 (1984) · Zbl 0598.14016 · doi:10.2307/2006944
[38] Osserman, B.: A limit linear series moduli scheme (Un schéma de modules de séries linéaires limites). Ann. Inst. Fourier 56(4), 1165-1205 (2006) · Zbl 1118.14037 · doi:10.5802/aif.2209
[39] Osserman, B.: Linked Grassmannians and crude limit linear series. Int. Math. Res. Not. 25, 1-27 (2006) · Zbl 1123.14003
[40] Parker, B.: Exploded manifolds. Adv. Math. 229(6), 3256-3319 (2012) · Zbl 1276.53092 · doi:10.1016/j.aim.2012.02.005
[41] Payne, S.: Fibers of tropicalization. Math. Zeit. 262, 301-311 (2009) · Zbl 1222.14130 · doi:10.1007/s00209-008-0374-x
[42] Ran, Z.: Modifications of Hodge bundles and enumerative geometry I: the stable hyperelliptic locus. Preprint arXiv:1011.0406 · Zbl 1352.14018
[43] Stoll, M.: Independence of rational points on twists of a given curve. Compositio Math. 142(5), 1201-1214 (2006) · Zbl 1128.11033 · doi:10.1112/S0010437X06002168
[44] Temkin, M.: On local properties of non-Archimedean analytic spaces. Math. Annalen 318, 585-607 (2000) · Zbl 0972.32019 · doi:10.1007/s002080000123
[45] Zhang, S.-W.: Admissible pairing on a curve. Invent. Math. 112(1), 171-193 (1993) · Zbl 0795.14015 · doi:10.1007/BF01232429
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.