×

Parabolic generating pairs of genus-one 2-bridge knot groups. (English) Zbl 1352.57012

A \(2\)-bridge link \(K\) admits a diagram which has a \((\mathbb{Z}_2 )^2\)-symmetry generated by the \(\pi\)-rotations \(h_1\) (resp. \(h_2\)) about the horizontal (resp. vertical) axis in the projection plane such that \(\mathrm{Fix}(h_1 )\) (resp. \(\mathrm{Fix}(h_2 )\)) contains the upper (resp. lower) tunnel. The long upper (resp. lower) meridian pair is obtained by joining the arcs of \(\mathrm{Fix}(h_i )\cap\) exterior\(K\) that are different from the upper (resp. lower) tunnel with small meridian loops passing through the endpoints of the arcs. The authors give a combinatorial proof, using small cancellation theory, that for a genus-one \(2\)-bridge knot, the long upper (or long lower) meridian pair generates a free subgroup of the knot group. They use this to obtain an alternative proof of a result of Agol, which is that any parabolic generating pair of a genus-one hyperbolic \(2\)-bridge knot group is equivalent to the upper or lower meridian pair. As an application they obtain a complete classification of the epimorphisms from \(2\)-bridge knot groups to genus-one hyperbolic \(2\)-bridge knot groups.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
20F06 Cancellation theory of groups; application of van Kampen diagrams

References:

[1] 1. C. Adams, Hyperbolic 3-manifolds with two generators, Comm. Anal. Geom.4 (1996) 181-206. genRefLink(16, ’S0218216516500231BIB001’, ’10.4310 · Zbl 0863.57006
[2] 2. C. Adams and A. Reid, Unknotting tunnels in two-bridge knot and link complements, Comment. Math. Helv.71 (1996) 617-627. genRefLink(16, ’S0218216516500231BIB002’, ’10.1007 · Zbl 0873.57006
[3] 3. I. Agol, The classification of non-free 2-parabolic generator Kleinian groups, Slides of talks given at Austin AMS Meeting and Budapest Bolyai conference, July 2002, Budapest, Hungary.
[4] 4. S. Bleiler and Y. Moriah, Heegaard splittings and branched coverings of B3, Math. Ann.281 (1988) 531-543. genRefLink(16, ’S0218216516500231BIB004’, ’10.1007
[5] 5. M. Boileau, Private communication in Hiroshima, May, 2011.
[6] 6. M, Boileau, S. Boyer, A. Reid and S. Wang, Simon’s conjecture for two-bridge knots, Comm. Anal. Geom.18 (2010) 121-143. genRefLink(16, ’S0218216516500231BIB006’, ’10.4310
[7] 7. M. Boileau and J. Porti, Geometrization of 3-orbifolds of cyclic type, Appendix A by Michael Heusener and Porti, Astérisque No. 272 (2001). · Zbl 0971.57004
[8] 8. M. Boileau and B. Zimmermann, The {\(\pi\)}-orbifold group of a link, Math. Z.200 (1989) 187-208. genRefLink(16, ’S0218216516500231BIB008’, ’10.1007
[9] 9. F. Bonahon and L. Siebenmann, New geometric splittings of classical knots, and the classification and symmetries of arborescent knots, preprint, http://www-bcf.usc.edu/fbonahon/Research/Preprints/Preprints.html.
[10] 10. R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Reprint of the 1963 original, Graduate Texts in Mathematics, Vol. 57 (Springer-Verlag, New York, 1977).
[11] 11. D. Futer, Involutions of knots that fix unknotting tunnels, J. Knot Theory Ramifications16 (2007) 741-748. [Abstract] genRefLink(128, ’S0218216516500231BIB011’, ’000251548400004’); · Zbl 1147.57004
[12] 12. D. Cooper, C. Hodgson and S. Kerckhoff, Three-dimensional orbifolds and cone-manifolds MSJ Memoirs 5, Mathematical Society of Japan, Tokyo, 2000, x+170 pp. · Zbl 0955.57014
[13] 13. M. Heusener and J. Porti, Generating pair of 2-bridge knot groups, Geom. Dedicata151 (2011) 279-295. genRefLink(16, ’S0218216516500231BIB013’, ’10.1007
[14] 14. D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: Homotopically trivial simple loops on 2-bridge spheres, Proc. London Math. Soc.104 (2012) 359-386. genRefLink(16, ’S0218216516500231BIB014’, ’10.1112 · Zbl 1250.57015
[15] 15. D. Lee and M. Sakuma, Epimorphisms from 2-bridge link groups onto Heckoid groups (II), Hiroshima Math. J.43 (2013) 265-284. genRefLink(128, ’S0218216516500231BIB015’, ’000320991900007’); · Zbl 1301.57007
[16] 16. D. Lee and M. Sakuma, Homotopically equivalent simple loops on 2-bridge spheres in 2-bridge link complements (I), Geom. Dedicata171 (2014) 1-28. genRefLink(16, ’S0218216516500231BIB016’, ’10.1007
[17] 17. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory (Springer-Verlag, Berlin, 1977). genRefLink(16, ’S0218216516500231BIB017’, ’10.1007 · Zbl 0368.20023
[18] 18. T. Ohtsuki, R. Riley and M. Sakuma, Epimorphisms between 2-bridge link groups, Geom. Topol. Monogr.14 (2008) 417-450. genRefLink(16, ’S0218216516500231BIB018’, ’10.2140 · Zbl 1146.57011
[19] 19. M. Sakuma, On Strongly Invertible Knots, Algebraic and topological theories (Kinosaki, 1984), 176-196; (Kinokuniya, Tokyo, 1986).
[20] 20. M. Sakuma, The geometries of spherical Montesinos links, Kobe J. Math.7 (1990) 167-190. · Zbl 0727.57007
[21] 21. W. Thurston, The geometry and topology of three-manifolds, http://library.msri.org/books/gt3m/.
[22] 22. J. L. Tollefson, Involutions of sufficiently large 3-manifolds, Topology20 (1981) 323-352. genRefLink(16, ’S0218216516500231BIB022’, ’10.1016
[23] 23. H. Zieshang, Generators of free product with amalgamation of two infinite cyclic groups, Math. Ann.227 (1977) 195-221. genRefLink(16, ’S0218216516500231BIB023’, ’10.1007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.