×

Classifying bicrossed products of Hopf algebras. (English) Zbl 1351.16031

Summary: Let \(A\) and \(H\) be two Hopf algebras. We shall classify up to an isomorphism that stabilizes \(A\) all Hopf algebras \(E\) that factorize through \(A\) and \(H\) by a cohomological type object \(\mathcal H^2(A,H)\). Equivalently, we classify up to a left \(A\)-linear Hopf algebra isomorphism, the set of all bicrossed products \(A\bowtie H\) associated to all possible matched pairs of Hopf algebras \((A,H,\triangleleft,\triangleright)\) that can be defined between \(A\) and \(H\). In the construction of \(\mathcal H^2(A,H)\) the key role is played by special elements of \(CoZ^1(H,A)\times\operatorname{Aut}_{\mathrm{CoAlg}}^1(H)\), where \(CoZ^1(H,A)\) is the group of unitary cocentral maps and \(\operatorname{Aut}_{\mathrm{CoAlg}}^1(H)\) is the group of unitary automorphisms of the coalgebra \(H\). Among several applications and examples, all bicrossed products \(H_4\bowtie k[C_n]\) are described by generators and relations and classified: they are quantum groups at roots of unity \(H_{4n,\omega}\) which are classified by pure arithmetic properties of the ring \(\mathbb Z_n\). The Dirichlet’s theorem on primes is used to count the number of types of isomorphisms of this family of \(4n\)-dimensional quantum groups. As a consequence of our approach the group \(\operatorname{Aut}_{\mathrm{Hopf}}(H_{4n,\omega})\) of Hopf algebra automorphisms is fully described.

MSC:

16T05 Hopf algebras and their applications
16S40 Smash products of general Hopf actions
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16T10 Bialgebras
16T15 Coalgebras and comodules; corings
16T20 Ring-theoretic aspects of quantum groups

References:

[1] Agore, A.L.: Crossed product of Hopf algebras. Commun. Algebra (2012). Preprint available at arXiv:1203.2454 · Zbl 1348.16025
[2] Agore, A.L., Chirvasitu, A., Ion, B., Militaru, G.: Bicrossed products for finite groups. Algebr. Represent. Theory 12, 481-488 (2009) · Zbl 1187.20023 · doi:10.1007/s10468-009-9145-6
[3] Agore, A.L., Militaru, G.: Deformations and descent type theory for Hopf algebras (2012). Preprint available at arXiv:1205.6564 · Zbl 1271.20038
[4] Aguiar, M., Andruskiewitsch, N.: Representations of matched pairs of groupoids and applications to weak Hopf algebras. Algebraic structures and their representations. Contemp. math. - Am. Math. Soc., Providence 376, 127-173 (2005) · Zbl 1100.16032 · doi:10.1090/conm/376/06955
[5] Andruskiewitsch, N., Devoto, J.: Extensions of Hopf algebras. Algebra Anal. 7, 22-61 (1995) · Zbl 0857.16032
[6] Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. 171, 375-417 (2010) · Zbl 1208.16028 · doi:10.4007/annals.2010.171.375
[7] Baaj, S., Skandalis, G., Vaes, S.: Measurable Kac cohomology for bicrossed products. Trans. Am. Math. Soc. 357, 1497-1524 (2005) · Zbl 1062.22009 · doi:10.1090/S0002-9947-04-03734-1
[8] Beattie, M.: A survey of Hopf algebras of low dimension. In: Proceedings of Groups, rings, Lie and Hopf algebras, 2007. Acta Applicandae Mathematicae, vol. 108, pp. 19-31. Bonne Bay, Nfld (2009) · Zbl 1191.16030
[9] Bontea, C.G.: Classifying bicrossed products of two Swedler’s Hopf algebras (2012). Preprint available at arXiv:1205.7010 · Zbl 1100.16032
[10] Brzezinski, T., Majid, S.: Coalgebra bundles. Commun. Math. Phys. 191, 467-492 (1998) · Zbl 0899.55016 · doi:10.1007/s002200050274
[11] Brzezinski, T., Majid, S.: Quantum geometry of algebra factorisations and coalgebra bundles. Commun. Math. Phys. 213, 491-521 (2000) · Zbl 0979.58002 · doi:10.1007/PL00005530
[12] Brzezinski, T.: Deformation of algebra factorisations. Commun. Algebra 29, 737-748 (2001) · Zbl 1003.16024 · doi:10.1081/AGB-100001537
[13] Burciu, S.: On complements and the factorization problem for Hopf algebras. Cent. Eur. J. Math. 9, 905-914 (2011) · Zbl 1263.16031 · doi:10.2478/s11533-011-0042-y
[14] Caenepeel, S., Ion, B., Militaru, G., Zhu, S.: The factorization problem and the smash biproduct of algebras and coalgebras. Algebr. Represent. Theory 3(1), 19-42 (2000) · Zbl 0957.16027 · doi:10.1023/A:1009917210863
[15] Cap, A., Schichl, H., Vanzura, J.: On twisted tensor product of algebras. Commun. Algebra 23, 4701-4735 (1995) · Zbl 0842.16005 · doi:10.1080/00927879508825496
[16] Chandrasekharan, K.: Introduction to Analytic Number Theory. GTM 148, Springer (1968) · Zbl 0169.37502
[17] Cirio, L.S., Pagani, C.: Deformation of tensor product (co)algebras via non-(co)normal twists (2011). Preprint available at arXiv:1112.2992 · Zbl 1307.16031
[18] Cohn, P.M.: A remark on the general product of two infinite Cyclic groups. Arch. Math. (Basel) 7, 94-99 (1956) · Zbl 0071.02201 · doi:10.1007/BF01899562
[19] Darafsheh, M.R.: Finite groups which factor as product of an alternating group and symmetric group. Commun. Algebra 32, 637-647 (2004) · Zbl 1068.20025 · doi:10.1081/AGB-120027919
[20] Douglas, J.: On finite groups with two independent generators. I, II, III, IV. Proc. Nat. Acad. Sci. U.S.A. 37, 604-610, 677-691, 749-760, 808-813 (1951) · Zbl 0043.02403 · doi:10.1073/pnas.37.9.604
[21] Doi, Y., Takeuchi, M.: Multiplication alteration by two-cocycles. Commun. Algebra 22, 5715-5732 (1994) · Zbl 0821.16038 · doi:10.1080/00927879408825158
[22] Guccione, J.A., Guccione, J.J., Valqui, C.: Twisted Planes. Commun. Algebra 38, 1930-1956 (2010) · Zbl 1204.16025 · doi:10.1080/00927870903023105
[23] Hilgemann, M., Ng, S.-H.: Hopf algebras of dimension 2p2. J. Lond. Math. Soc. 80(2), 295-310 (2009) · Zbl 1187.16029 · doi:10.1112/jlms/jdp026
[24] Hungerford, T.W.: Algebra. Graduate Text in Mathematics, vol. 73. Springer (1974) · Zbl 1263.16031
[25] Ito, N., No article title, Über das Produkt von zwei abelschen Gruppen. Math. Z., 62, 400-401 (1955) · Zbl 0064.25203
[26] Kassel, C.: Quantum groups. Graduate Texts in Mathematics, vol. 155. Springer-Verlag, New York (1995) · Zbl 0808.17003
[27] Krotz, B.: A novel characterization of the Iwasawa decomposition of a simple lie group. Springer Lect. Notes Phys. 723, 195-201 (2007)
[28] López Peña, J., Navarro, G.: On the classification and properties of noncommutative duplicates. K-Theory 38(2), 223-234 (2008) · Zbl 1189.16012 · doi:10.1007/s10977-007-9017-y
[29] López Peña, J., Stefan, D.: On the classification of twisting maps between Kn and Km. Algebr. Represent. Theory 14, 869-895 (2011) · Zbl 1266.16023 · doi:10.1007/s10468-010-9222-x
[30] Maillet, E.: Sur les groupes échangeables et les groupes décomposables. Bull. Soc. Math. Fr. 28, 7-16 (1900) · JFM 31.0144.02
[31] Majard,D.: On DoubleGroups and the Poincare group (2011). Preprint available at arXiv:1112.6208 · Zbl 0899.55016
[32] Majid, S.: Matched Pairs of Lie Groups and Hopf Algebra Bicrossproducts. Nucl. Phys., B Proc. Suppl. 6, 422-424 (1989) · Zbl 0959.16500 · doi:10.1016/0920-5632(89)90488-X
[33] Majid, S.: Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction. J. Algebra 130, 17-64 (1990) · Zbl 0694.16008 · doi:10.1016/0021-8693(90)90099-A
[34] Majid, S.: Foundations of Quantum Groups Theory. Cambridge University Press (1995) · Zbl 0857.17009
[35] Masuoka, A.: Hopf algebra extensions and cohomology. In: New Directions in Hopf Algebras, vol. 43, pp. 167-209. MSRI Publ. (2002) · Zbl 1011.16024
[36] Masuoka, A., Classification of semisimple Hopf algebras (2008), Elsevier/Noth-Holland · Zbl 1218.16020
[37] Michor, P.W.: Knit products of graded Lie algebras and groups. In: Proceedings of the Winter School on Geometry and Physics (Srn, 1989). Rend. Circ. Mat. Palermo (2) Suppl. No 22, pp. 171-175 (1990) · Zbl 0954.17508
[38] Molnar, R.K.: Semi-direct products of Hopf algebras. J. Algebra 47, 29-51 (1977) · Zbl 0353.16004 · doi:10.1016/0021-8693(77)90208-3
[39] Natale, S.: Semisimple Hopf algebras of dimension 60. J. Algebra 324, 3017-3034 (2010) · Zbl 1222.16022 · doi:10.1016/j.jalgebra.2010.06.007
[40] Ng, S.-H.: Hopf algebras of dimension 2p. Proc. Am. Math. Soc. 133(8) 2237-2242 (2005) · Zbl 1069.16043 · doi:10.1090/S0002-9939-05-07804-4
[41] Ore, O.: Structures and group theory. I. Duke Math. J. 3(2), 149-174 (1937) · JFM 63.0060.01 · doi:10.1215/S0012-7094-37-00311-9
[42] Radford, D.E.: On Kauffmans Knot invariants arising from finite-dimensional Hopf algebras, advances in Hopf algebras. Lectures Notes in Pure and Applied Mathematics, vol. 158, pp. 205-266. Marcel Dekker, N.Y. (1994) · Zbl 0841.57044
[43] Rédei, L.: Zur Theorie der faktorisierbaren Gruppen I. Acta Math. Acad. Sci. Hung. 1, 74-98 (1950) · Zbl 0039.01701 · doi:10.1007/BF02022554
[44] Rotman, J.: An introduction to the theory of groups. Graduate Texts in Mathematics, vol. 148, 4th edn. Springer-Verlag, New York (1995) · Zbl 0810.20001 · doi:10.1007/978-1-4612-4176-8
[45] Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras. Commun. Algebra 9, 841-882 (1981) · Zbl 0456.16011 · doi:10.1080/00927878108822621
[46] Vaes, S., Vainerman, L.: Extensions of locally compact quantum groups and the bicrossed product construction. Adv. Math. 175(1), 1-101 (2003) · Zbl 1034.46068 · doi:10.1016/S0001-8708(02)00040-3
[47] Zhu, Y.: Hopf algebras of prime dimension. Int. Math. Res. Notes 1, 53-59 (1994) · Zbl 0822.16036 · doi:10.1155/S1073792894000073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.