×

Submanifolds with homothetic Gauss map in codimension two. (English) Zbl 1350.53013

Summary: Let \(f:M^n\to\mathbb R^{n+p}\) be an isometric immersion of an \(n\)-dimensional Riemannian manifold \(M^n\) into the \((n+p)\)-dimensional Euclidean space. Its Gauss map \(\phi:M^n\to G_n(\mathbb R^{n+p})\) into the Grassmannian \(G_n(\mathbb R^{n+p})\) is defined by assigning to every point of \(M^n\) its tangent space, considered as a vector subspace of \(\mathbb R^{n+p}\). The third fundamental form III of \(f\) is the pullback of the canonical Riemannian metric on \(G_p(\mathbb R^{n+p})\) via \(\phi\). In this article we derive a complete classification of all those \(f\) with codimension two for which the Gauss map \(\phi\) is homothetic; i.e., III is a constant multiple of the Riemannian metric on \(M^n\). We furthermore study and classify codimension two submanifolds with homothetic Gauss map in real space forms of nonzero curvature. To conclude, based on a strong connection established between homothetic Gauss map and minimal Einstein submanifolds, we pose a conjecture suggesting a possible complete classification of the submanifolds with the former property in arbitrary codimension.

MSC:

53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
53C40 Global submanifolds

References:

[1] Berndt, J., Console, S., Olmos, C.: Submanifolds and Holonomy. Chapman & Hall/CRC Research Notes in Mathematics, vol. 434. Chapman & Hall/CRC, Boca Raton, FL (2003). doi:10.1201/9780203499153 · Zbl 1043.53044
[2] Bryant, R.L.: Minimal surfaces of constant curvature in \[S^nSn\]. Trans. Amer. Math. Soc. 290(1), 259-271 (1985). doi:10.2307/1999793 · Zbl 0572.53002 · doi:10.2307/1999793
[3] Calabi, E.: Isometric imbedding of complex manifolds. Ann. Math. 2(58), 1-23 (1953) · Zbl 0051.13103 · doi:10.2307/1969817
[4] Chen, B.Y.: Total Mean Curvature and Submanifolds of Finite type, Series in Pure Mathematics, vol. 1. World Scientific, Singapore (1984) · Zbl 0537.53049 · doi:10.1142/0065
[5] Chern, S., Osserman, R.: Complete minimal surfaces in Euclidean \[n\] n-space. J. Analyse Math. 19, 15-34 (1967) · Zbl 0172.22802 · doi:10.1007/BF02788707
[6] Dajczer, M.: Submanifolds and Isometric Immersions, Mathematics Lecture Series, vol. 13. Publish or Perish Inc., Houston, TX (1990). (based on the notes prepared by Mauricio Antonucci. Gilvan Oliveira, Paulo Lima-Filho and Rui Tojeiro) · Zbl 0705.53003
[7] Deprez, J.R.: Immersions of finite type of compact, homogeneous, Riemannian manifolds. ProQuest LLC, Ann Arbor, MI (1989). (Ph.D. thesis, Katholieke Universiteit Leuven, Belgium) · Zbl 0652.53037
[8] Di Scala, A.J.: Minimal immersions of Kähler manifolds into Euclidean spaces. Bull. Lond. Math. Soc. 35(6), 825-827 (2003). doi:10.1112/S0024609303002492 · Zbl 1044.53016 · doi:10.1112/S0024609303002492
[9] do Carmo, M.P., Wallach, N.R.: Minimal immersions of spheres into spheres. Ann. Math 2(93), 43-62 (1971) · Zbl 0218.53069 · doi:10.2307/1970752
[10] Kenmotsu, K.: Minimal surfaces with constant curvature in \[44\]-dimensional space forms. Proc. Am. Math. Soc. 89(1), 133-138 (1983). doi:10.2307/2045079 · Zbl 0531.53046 · doi:10.2307/2045079
[11] Matsuyama, Y.: Minimal Einstein submanifolds with codimension two. Tensor (N.S.) 52(1), 61-68 (1993) · Zbl 0804.53085
[12] Moore, J.D.: Isometric immersions of riemannian products. J. Differ. Geom. 5, 159-168 (1971) · Zbl 0213.23804
[13] Muto, Y.: Submanifolds of a Euclidean space with homothetic Gauss map. J. Math. Soc. Jpn. 32(3), 531-555 (1980). doi:10.2969/jmsj/03230531 · Zbl 0432.53024 · doi:10.2969/jmsj/03230531
[14] Nölker, S.: Isometric immersions with homothetical Gauss map. Geom. Dedic. 34(3), 271-280 (1990). doi:10.1007/BF00181689 · Zbl 0702.53033 · doi:10.1007/BF00181689
[15] Obata, M.: The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature. J. Differ. Geom. 2, 217-223 (1968) · Zbl 0181.49801
[16] Ohnita, Y.: The first standard minimal immersions of compact irreducible symmetric spaces. In: Differential Geometry of Submanifolds (Kyoto, 1984). Lecture Notes in Mathematics, vol. 1090, pp. 37-49. Springer, Berlin (1984). doi:10.1007/BFb0101565 · Zbl 0546.53037
[17] Osserman, R.: Minimal surfaces, Gauss maps, total curvature, eigenvalue estimates, and stability. In: The Chern Symposium 1979 (Proceedings of International Symposium, Berkeley, CA, 1979), pp. 199-227. Springer, New York (1980) · Zbl 0218.53069
[18] Takahashi, T.: Isometric immersion of Riemannian homogeneous manifolds. Tsukuba J. Math. 12(1), 231-233 (1988) · Zbl 0652.53037
[19] Wallach, N.R.: Minimal immersions of symmetric spaces into spheres. In: Symmetric Spaces (Short Courses, Washington Univ., St. Louis, MO, 1969-1970), pp. 1-40. Pure and Applied Mathematics, vol. 8. Dekker, New York (1972) · Zbl 0232.53027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.