×

Predator-prey model with diffusion and indirect prey-taxis. (English) Zbl 1349.92133

Summary: We analyze predator-prey models in which the movement of predator searching for prey is the superposition of random dispersal and taxis directed toward the gradient of concentration of some chemical released by prey (e.g. pheromone), model II, or released from damaged or injured prey due to predation (e.g. blood), model I. The logistic ODE describing the dynamics of prey population is coupled to a fully parabolic chemotaxis system describing the dispersion of chemoattractant and predator’s behavior. Global-in-time solutions are proved in any space dimension and stability of homogeneous steady states is shown by linearization for a range of parameters. For space dimension \(N\leq 2\) the basin of attraction of such a steady state is characterized by means of nonlinear analysis under some structural assumptions. In contrast to model II, model I possesses spatially inhomogeneous steady states at least in the case \(N=1\).

MSC:

92D25 Population dynamics (general)
35K57 Reaction-diffusion equations
35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
Full Text: DOI

References:

[1] Aiseba, B., Bendahmane, M. and Noussair, A., A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Anal.9 (2008) 2086-2105. · Zbl 1156.35404
[2] Alikakos, N. D., \( L^p\) bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations4 (1979) 827-868. · Zbl 0421.35009
[3] Bellomo, N., Bellouquid, A., Tao, Y. and Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci.25 (2015) 1663-1763, Doi: 10.1142/S021820251550044X. · Zbl 1326.35397
[4] Chakrabortya, A., Singh, M., Lucy, M. D. and Ridland, P., Predator-prey model with prey-taxis and diffusion, Math. Comput. Model.46 (2007) 482-498. · Zbl 1132.35395
[5] Chaplain, M. A. J. and Lolas, G., Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Netw. Heterog. Med.1 (2006) 399-439. · Zbl 1108.92023
[6] Cholewa, J. W. and Dlotko, T., Global Attractors in Abstract Parabolic Problems (Cambridge Univ. Press, 2000). · Zbl 0954.35002
[7] Connover, M., Predator-Prey Dynamics: The Role of Olfaction (CRC Press, 2007).
[8] Cosner, C., DeAngelis, D. L., Ault, J. S. and Olson, D. B., Effects of spatial grouping on the functional response of predators, Theor. Popul. Biol.56 (1999) 65-75. · Zbl 0928.92031
[9] Ferrari, M. C., Wisenden, B. D. and Chivers, D. P., Chemical ecology of predator-prey interactions in aquatic ecosystems: A review and prospectus, Canad. J. Zool.33 (2010) 698-724.
[10] Friedman, A. and Tello, J. I., Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl.272 (2002) 138-163. · Zbl 1025.35005
[11] Gliwicz, Z. M. and Wrzosek, D., Predation mediated coexistence of large and small bodied daphnia at different food levels, Amer. Nat.172 (2008) 358-374.
[12] Grunbaum, D., Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, Amer. Nat.151 (1998) 97-115.
[13] Heithaus, M. R. and Vando, J. J., Predator-prey interactions, in Biology of Sharks and Their Relatives, eds. Carrier, J. C. and Musick, J. A., 2nd edn. (CRC Press, 2012), pp. 505-547.
[14] Henry, D., Geometric Theory of Semilinear Parabolic Equations (Springer-Verlag, 1981). · Zbl 0456.35001
[15] Hillen, T. and Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol.58 (2009) 183-217. · Zbl 1161.92003
[16] Hillen, T., Painter, K. J. and Winkler, M., Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci.23 (2013) 165-198. · Zbl 1263.35204
[17] Hoefler, C. D., Taylor, M. and Jakob, E. M., Chemosensory response to prey in Phidippus audax and Pardosa milvina, J. Arachnol.30 (2002) 155-158.
[18] Jüngel, A., Diffusive and nondiffusive population models, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, eds. Naldi, G., Pareschi, L. and Toscani, G. (Birkhäuser, 2010). · Zbl 1398.92205
[19] Kareiva, P. and Odell, G., Swarms of predators exhibit “prey-taxis” if individual predators use area-restricted search, Amer. Nat.130 (1987) 233-270.
[20] Ladyzenskaja, O. A., Solonnikov, V. A. and Ural’ceva, N. N., Linear and Quasilinear Equations of Parabolic Type, , Vol. 23 (Amer. Math. Soc., 1968). · Zbl 0174.15403
[21] Lee, J. M., Hillen, T. and Lewis, M. A., Pattern formation in prey-taxis systems, J. Biol. Dynam.3 (2009) 551-573. · Zbl 1315.92064
[22] Leung, A., Limiting behavior for a prey-predator model with diffusion and crowding effects, J. Math. Biol.6 (1978) 87-93. · Zbl 0386.92011
[23] Lonnstedt, O. M., McCormick, M. I. and Chivers, D. P., Well-informed foraging: Damage-released chemical cues of injured prey signal quality and size to predators, Oecologia168 (2012) 651-658, Doi: 10.1007/s00442-011-2116-8.
[24] Małogrosz, M., Well-posedness and asymptotic behavior for a multidimensional model of morphogen transport, J. Evol. Equations12 (2012) 353-366. · Zbl 1257.35045
[25] Murray, J. D., Mathematical Biology (Springer-Verlag, 2002). · Zbl 1006.92001
[26] Negreanu, M. and Tello, J. I., Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations258 (2015) 1592-1617. · Zbl 1310.35040
[27] Rosenzweig, M. L. and MacArthur, R. H., Graphical representation and stability conditions of predator-prey interaction, Amer. Nat.97 (1963) 209-223.
[28] Sapoukhina, N., Tyutyunov, Y. and Arditi, R., The role of prey taxis in biological control, Amer. Nat.162 (2003) 61-76.
[29] Schaaf, R., Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc.292 (1985) 531-556. · Zbl 0637.35007
[30] Schuster, F. L. and Levandowsky, M., Chemosensory responses of Acanthamoeba castellanii: Visual analysis of random movement and responses to chemical signals, J. Eukaryot. Microbiol.43 (1996) 150-158.
[31] Segel, L. A., Analysis of population chemotaxis, in Mathematical Models in Molecular and Cellular Biology, eds. Segal, L. A. (Cambridge Univ. Press, 1980). · Zbl 0448.92001
[32] Shigesada, N., Kawasaki, K. and Teramoto, E., Spatial segregation of interacting species, J. Theor. Biol.79 (1979) 83-99.
[33] Smoller, J., Shock Waves and Reaction-Diffusion Systems (Springer, 1994). · Zbl 0807.35002
[34] Tao, Y., Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Anal.11 (2010) 2056-2064. · Zbl 1195.35171
[35] Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, to appear in J. Eur. Math. Soc., arXiv: 1608.07622.
[36] Wang, X., Wang, W. and Zhang, G., Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci.38 (2015) 431-443, Doi: 10.1002/mma.3079. · Zbl 1307.92333
[37] Wang, X. and Xu, Q., Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem, J. Math. Biol.66 (2013) 1241-1266. · Zbl 1301.92006
[38] Williams, S. A. and Chow, P.-L., Nonlinear reaction-diffusion models for interacting populations, J. Math. Anal. Appl.62 (1978) 157-169. · Zbl 0372.35047
[39] Wyatt, T. D., Pheromones and Animal Behavior (Cambridge Univ. Press, 2003).
[40] Yahner, R. H., Wildlife Behavior and Conservation (Springer, 2011).
[41] Zuk, M. and Kolluru, G. R., Exploitation of sexual signals by predators and parasitoids, Quart. Rev. Biol.73 (1998) 418-438.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.