×

An interface reconstruction method based on an analytical formula for 3D arbitrary convex cells. (English) Zbl 1349.76601

Summary: In this paper, we are interested in an interface reconstruction method for 3D arbitrary convex cells that could be used in multi-material flow simulations for instance. We assume that the interface is represented by a plane whose normal vector is known and we focus on the volume-matching step that consists in finding the plane constant so that it splits the cell according to a given volume fraction. We follow the same approach as in the recent authors’ publication for 2D arbitrary convex cells in planar and axisymmetrical geometries, namely we derive an analytical formula for the volume of the specific prismatoids obtained when decomposing the cell using the planes that are parallel to the interface and passing through all the cell nodes. This formula is used to bracket the interface plane constant such that the volume-matching problem is rewritten in a single prismatoid in which the same formula is used to find the final solution. The proposed method is tested against an important number of reproducible configurations and shown to be at least five times faster.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

SLIC; BRENT; VOFTools; KRAKEN

References:

[1] Ahn, H. T.; Shashkov, M., Multi-material interface reconstruction on generalized polyhedral meshes, J. Comput. Phys., 226, 2096-2132 (2007) · Zbl 1388.76232
[2] Ahn, H. T.; Shashkov, M., Multi-material interface reconstruction on generalized polyhedral meshes (2007), Los Alamos National Laboratory, also available as · Zbl 1388.76232
[3] Aniszewski, W.; Ménard, T.; Marek, M., Volume of Fluid (VOF) type advection methods in two-phase flow: a comparative study, Comput. Fluids, 97, 52-73 (2014) · Zbl 1391.76764
[4] Barth, T. J.; Fredrickson, P. O., Higher-order solution of the Euler equations on unstructured grids using quadratic reconstruction, (28th AIAA Aerospace Sciences Meeting. 28th AIAA Aerospace Sciences Meeting, Reno (1990))
[5] Benson, D. J., Volume of fluid interface reconstruction methods for multi-material problems, Appl. Mech. Rev., 55, 151-165 (2002)
[6] Brent, R. P., Algorithms for Minimization Without Derivatives (1973), Prentice Hall: Prentice Hall Englewood Cliffs, NJ, 195 pp · Zbl 0245.65032
[7] DeBar, R., Fundamentals of the KRAKEN code (1974), LLNL Report, UCIR-760
[8] de Sousa, F. S.; Mangiavacchi, N.; Nonato, L. G.; Castelo, A.; Tomé, M. F.; Ferreira, V. G.; Cuminato, J. A.; McKee, S., A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces, J. Comput. Phys., 198, 469-499 (2004) · Zbl 1116.76412
[9] Diot, S.; François, M.; Dendy, E., An interface reconstruction method based on analytical formulae for 2D planar and axisymmetric arbitrary convex cells, J. Comput. Phys., 275, 53-64 (2014) · Zbl 1349.76600
[10] Dyadechko, V.; Shashkov, M., Reconstruction of multi-material interfaces from moment data, J. Comput. Phys., 227, 5361-5384 (2008) · Zbl 1220.76048
[11] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 423-456 (1999) · Zbl 0954.76063
[12] Glimm, J.; Grove, J. W.; Li, X. L.; Shyue, K.; Zeng, Y.; Zhang, Q., Three-dimensional front tracking, SIAM J. Sci. Comput., 19, 703-727 (1998) · Zbl 0912.65075
[13] Kothe, D. B.; Rider, W. J.; Mosso, S. J.; Brock, J. S., Volume tracking of interfaces having surface tension in two and three dimensions, (34th AIAA Aerospace Sciences Meeting. 34th AIAA Aerospace Sciences Meeting, Reno (1996)), Article 96-0859
[14] Liovic, P.; Rudman, M.; Liow, J.-L.; Lakehal, D.; Kothe, D., A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction, Comput. Fluids, 35, 1011-1032 (2006) · Zbl 1177.76292
[15] López, J.; Hernández, J., Analytical and geometrical tools for 3D volume of fluid methods in general grids, J. Comput. Phys., 227, 5939-5948 (2008) · Zbl 1142.76042
[16] Nichols, B. D.; Hirt, C. W., Methods for calculating multi-dimensional, transient free surface flows past bodies (1975), LANL Report LA-UR-75-1932
[17] Noh, W. F.; Woodward, P., SLIC (Simple Line Interface Calculation), (Lect. Notes Phys., vol. 59 (1976), Springer-Verlag: Springer-Verlag New York), 330-340 · Zbl 0382.76084
[18] Pilliod, J. E.; Puckett, E. G., Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys., 199, 465-502 (2004) · Zbl 1126.76347
[19] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran; the Art of Scientific Computing (1993), Cambridge University Press: Cambridge University Press New York, NY, USA
[20] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J. Comput. Phys., 141, 112-152 (1998) · Zbl 0933.76069
[21] Scardovelli, R.; Zaleski, S., Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput. Phys., 164, 228-237 (2000) · Zbl 0993.76067
[22] Shin, S.; Juric, D., Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, J. Comput. Phys., 180, 427-470 (2002) · Zbl 1143.76595
[23] Stephenson, M. B.; Christiansen, H. N., A polyhedron clipping and capping algorithm and a display system for three dimensional finite element models, ACM SIGGRAPH Comput. Graph., 9, 1-16 (1975)
[24] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574
[25] Yang, X.; James, A. J., Analytic relations for reconstructing piecewise linear interfaces in triangular and tetrahedral grids, J. Comput. Phys., 214, 41-54 (2006) · Zbl 1137.76456
[26] Youngs, D. L., Time-dependent multi-material flow with large fluid distortion, (Morton, K. W.; Baines, M. J., Numerical Methods for Fluids Dynamics (1982), Academic Press: Academic Press New York), 273-285 · Zbl 0537.76071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.