×

Noncommutative cosmological models coupled to a perfect fluid and a cosmological constant. (English) Zbl 1348.83093

Summary: We carry out a noncommutative analysis of several Friedmann-Robert-Walker models, coupled to different types of perfect fluids and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. We show that the noncommutative versions of these models show several relevant differences with respect to the correspondent commutative ones.

MSC:

83F05 Relativistic cosmology

References:

[1] H.S. Snyder, Quantized space-time, Phys. Rev.71 (1947) 38 [INSPIRE]. · Zbl 0035.13101 · doi:10.1103/PhysRev.71.38
[2] C. Yang, On quantized space-time, Phys. Rev.72 (1947) 874 [INSPIRE]. · Zbl 0029.18407 · doi:10.1103/PhysRev.72.874
[3] A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP02 (1998) 003 [hep-th/9711162] [INSPIRE]. · Zbl 1018.81052 · doi:10.1088/1126-6708/1998/02/003
[4] for recent reviews: N.A. Nekrasov, Trieste lectures on solitons in noncommutative gauge theories, hep-th/0011095 [INSPIRE].
[5] A. Konechny and A.S. Schwarz, Introduction to M(atrix) theory and noncommutative geometry, Phys. Rept.360 (2002) 353 [hep-th/0012145] [INSPIRE]. · Zbl 0985.81126 · doi:10.1016/S0370-1573(01)00096-5
[6] J.A. Harvey, Komaba lectures on noncommutative solitons and D-branes, hep-th/0102076 [INSPIRE].
[7] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE]. · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[8] R. Banerjee, Dissipation and noncommutativity in planar quantum mechanics, Mod. Phys. Lett.A 17 (2002) 631 [hep-th/0106280] [INSPIRE]. · Zbl 1083.81542
[9] G. ’t Hooft, Quantum gravity as a dissipative deterministic system, Class. Quant. Grav.16 (1999) 3263 [gr-qc/9903084] [INSPIRE]. · Zbl 0937.83015 · doi:10.1088/0264-9381/16/10/316
[10] G. ’t Hooft, Determinism and dissipation in quantum gravity, hep-th/0003005 [INSPIRE]. · Zbl 1056.83004
[11] G. ’t Hooft, Quantum mechanics and determinism, hep-th/0105105 [INSPIRE]. · Zbl 1056.83004
[12] A. Deriglazov et al., Open string with a background B-field as the first order mechanics, noncommutativity and soldering formalism, Phys. Rev.D 76 (2007) 064007 [arXiv:0707.1799] [INSPIRE].
[13] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP09 (1999) 032 [hep-th/9908142] [INSPIRE]. · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[14] A. Deriglazov, Quantum mechanics on noncommutative plane and sphere from constrained systems, Phys. Lett.B 530 (2002) 235 [INSPIRE]. · Zbl 0989.81050
[15] A. Deriglazov, Noncommutative relativistic particle on the electromagnetic background, Phys. Lett.B 555 (2003) 83 [hep-th/0208201] [INSPIRE]. · Zbl 1008.81040
[16] A. Deriglazov, Noncommutative version of an arbitrary nondegenerated mechanics, hep-th/0208072 [INSPIRE].
[17] I. Arefeva, D. Belov, A. Giryavets, A. Koshelev and P. Medvedev, Noncommutative field theories and (super)string field theories, hep-th/0111208 [INSPIRE]. · Zbl 1043.81068
[18] R.J. Szabo, Quantum gravity, field theory and signatures of NC spacetime, arXiv:0906.2913 [INSPIRE]. · Zbl 1184.83004
[19] R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept.378 (2003) 207 [hep-th/0109162] [INSPIRE]. · Zbl 1042.81581 · doi:10.1016/S0370-1573(03)00059-0
[20] O.F. Dayi and L.T. Kelleyane, Wigner functions for the Landau problem in noncommutative spaces, Mod. Phys. Lett.A 17 (2002) 1937 [hep-th/0202062] [INSPIRE]. · Zbl 1083.81544
[21] R. Amorim and J. Barcelos-Neto, Hamiltonian embedding of the massive noncommutative U(1) theory, Phys. Rev.D 64 (2001) 065013 [hep-th/0101196] [INSPIRE].
[22] P.A. Horvathy and M.S. Plyushchay, Anyon wave equations and the noncommutative plane, Phys. Lett.B 595 (2004) 547 [hep-th/0404137] [INSPIRE]. · Zbl 1247.81227
[23] P.A. Horvathy and M.S. Plyushchay, Non-relativistic anyons, exotic Galilean symmetry and noncommutative plane, JHEP06 (2002) 033 [hep-th/0201228] [INSPIRE]. · doi:10.1088/1126-6708/2002/06/033
[24] C. Duval and P. Horvathy, The ’Peierls substitution’ and the exotic Galilei group, Phys. Lett.B 479 (2000) 284 [hep-th/0002233] [INSPIRE]. · Zbl 1050.81568
[25] R. Peierls, Zur theorie des diamagnetismus von leitungselektronen, Z. Phys.80 (1933) 763. · Zbl 0006.19204 · doi:10.1007/BF01342591
[26] D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev.B 14 (1976) 2239 [INSPIRE].
[27] C. Duval and P. Horvathy, Exotic Galilean symmetry in the noncommutative plane and the Hall effect, J. Phys.A 34 (2001) 10097 [hep-th/0106089] [INSPIRE]. · Zbl 0993.81029
[28] P. Horvathy, The Noncommutative Landau problem and the Peierls substitution, Annals Phys.299 (2002) 128 [hep-th/0201007] [INSPIRE]. · Zbl 1005.81098 · doi:10.1006/aphy.2002.6271
[29] G.V. Dunne, R. Jackiw and C. Trugenberger, Topological (Chern-Simons) Quantum Mechanics, Phys. Rev.D 41 (1990) 661 [INSPIRE].
[30] S. Minwalla, M. Van Raamsdonk and N. Seiberg, Noncommutative perturbative dynamics, JHEP02 (2000) 020 [hep-th/9912072] [INSPIRE]. · Zbl 0959.81108 · doi:10.1088/1126-6708/2000/02/020
[31] A.E.F. Djema¨ı and H. Smail, On quantum mechanics on noncommutative quantum phase space, Commun. Theor. Phys.41 (2004) 837. · Zbl 1167.81422
[32] A.E.F. Djemaï and H. Smail, On noncommutative classical mechanics, hep-th/0309034 [INSPIRE]. · Zbl 1167.81422
[33] A.E.F. Djemaï, Quantum mechanics as a matrix symplectic geometry, Int. J. Theor. Phys.35 (1996) 519. · Zbl 0849.46050 · doi:10.1007/BF02082821
[34] R. Amorim, Tensor Operators in Noncommutative Quantum Mechanics, Phys. Rev. Lett.101 (2008) 081602 [arXiv:0804.4400] [INSPIRE]. · Zbl 1228.81189 · doi:10.1103/PhysRevLett.101.081602
[35] E.M.C. Abreu, A.C.R. Mendes and W. Oliveira, The noncommutative Doplicher-Fredenhagen-Roberts-Amorim space, SIGMA6 (2010) 083. · Zbl 1241.70046
[36] E.M. Abreu, C. Neves and W. Oliveira, Noncommutativity from the symplectic point of view, Int. J. Mod. Phys.A 21 (2006) 5359 [hep-th/0411108] [INSPIRE]. · Zbl 1108.81047
[37] For a review of the method, see E.M.C. Abreu, A.C.R. Mendes and W. Oliveira, Noncommutativity and duality through the symplectic embedding formalism, SIGMA6 (2010) 059. · Zbl 1241.70045
[38] H. Garcia-Compean, O. Obregon and C. Ramirez, Noncommutative quantum cosmology, Phys. Rev. Lett.88 (2002) 161301 [hep-th/0107250] [INSPIRE]. · doi:10.1103/PhysRevLett.88.161301
[39] G. Barbosa and N. Pinto-Neto, Noncommutative geometry and cosmology, Phys. Rev.D 70 (2004) 103512 [hep-th/0407111] [INSPIRE].
[40] G. Barbosa, Noncommutative conformally coupled scalar field cosmology and its commutative counterpart, Phys. Rev.D 71 (2005) 063511 [hep-th/0408071] [INSPIRE].
[41] Q.-G. Huang and M. Li, CMB power spectrum from noncommutative space-time, JHEP06 (2003) 014 [hep-th/0304203] [INSPIRE]. · doi:10.1088/1126-6708/2003/06/014
[42] H. Kim, G.S. Lee, H.W. Lee and Y.S. Myung, Second order corrections to noncommutative space-time inflation, Phys. Rev.D 70 (2004) 043521 [hep-th/0402198] [INSPIRE].
[43] D.-J. Liu and X.-Z. Li, Cosmological perturbations and noncommutative tachyon inflation, Phys. Rev.D 70 (2004) 123504 [astro-ph/0402063] [INSPIRE].
[44] Q.-G. Huang and M. Li, Power spectra in spacetime noncommutative inflation, Nucl. Phys.B 713 (2005) 219 [astro-ph/0311378] [INSPIRE]. · doi:10.1016/j.nuclphysb.2005.02.002
[45] H. Kim, G.S. Lee and Y.S. Myung, Noncommutative space-time effect on the slow roll period of inflation, Mod. Phys. Lett.A 20 (2005) 271 [hep-th/0402018] [INSPIRE]. · Zbl 1064.83045
[46] B. Vakili, P. Pedram and S. Jalalzadeh, Late time acceleration in a deformed phase space model of dilaton cosmology, Phys. Lett.B 687 (2010) 119 [arXiv:1003.1194] [INSPIRE].
[47] O. Obregon and I. Quiros, Can noncommutative effects account for the present speed up of the cosmic expansion?, Phys. Rev.D 84 (2011) 044005 [arXiv:1011.3896] [INSPIRE].
[48] C. Neves, G. Monerat, E.C. Silva and L.F. Filho, Can noncommutativity affect the whole history of the Universe?, arXiv:1109.3514 [INSPIRE]. · Zbl 1359.83043
[49] J.E. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc.45 (1949) 99. · Zbl 0031.33601 · doi:10.1017/S0305004100000487
[50] J. Vey, Deformation du crochet de Poisson sur une variet´e symplectique, Commentari Mathematici Helvetici50 (1975) 421. · Zbl 0351.53029 · doi:10.1007/BF02565761
[51] M. Flato et al., <Emphasis Type=”Italic“>D´eformations 1-diff´erentiables d’alg‘ebres de Lie attach´es ‘a une vari´ete symplectique ou de contact, Commentari Mathematici Helvetici <Emphasis Type=”Bold”>31 (1975) 47. · Zbl 0317.53039
[52] M. Flato, A. Lichnerowicz and D. Sternheimer, Deformations of Poisson Brackets, Dirac Brackets and Applications, J. Math. Phys.17 (1976) 1754 [INSPIRE]. · doi:10.1063/1.523104
[53] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation Theory and Quantization 1 Deformations of Symplectic Structures, Annals Phys.111 (1978) 61 [INSPIRE]. · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[54] M. Kontsevich, Deformation quantization of Poisson manifolds. 1., Lett. Math. Phys.66 (2003) 157 [q-alg/9709040] [INSPIRE]. · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[55] C. Neves and W. Oliveira, Clebsch parameterization from the symplectic point of view, Phys. Lett.A 321 (2004) 267 [hep-th/0310064] [INSPIRE]. · Zbl 1118.81416
[56] F. Alvarenga, J. Fabris, N. Lemos and G. Monerat, Quantum cosmological perfect fluid models, Gen. Rel. Grav.34 (2002) 651 [gr-qc/0106051] [INSPIRE]. · Zbl 0998.83076 · doi:10.1023/A:1015986011295
[57] B.F. Schutz, Perfect Fluids in General Relativity: Velocity Potentials and a Variational Principle, Phys. Rev.D 2 (1970) 2762 [INSPIRE]. · Zbl 1227.83022
[58] B.F. Schutz, Hamiltonian Theory of a Relativistic Perfect Fluid, Phys. Rev.D 4 (1971) 3559 [INSPIRE].
[59] Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J.116 (1998) 1009 [astro-ph/9805201] [INSPIRE]. · doi:10.1086/300499
[60] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J.517 (1999) 565 [astro-ph/9812133] [INSPIRE]. · Zbl 1368.85002 · doi:10.1086/307221
[61] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Gravitation, John Wiley & Sons, New York U.S.A. (1972), pg. 482.
[62] M. Carmeli and T. Kuzmenko, Value of the cosmological constant in the cosmological relativity theory, astro-ph/0110590 [INSPIRE]. · Zbl 0992.83060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.