×

\(\varepsilon\)-regularity for systems involving non-local, antisymmetric operators. (English) Zbl 1348.58009

Let \(D\subset\subset \mathbb R^m\) be a domain. For \(l\in\{0,\dots,m\}\), \( i,j\in\{1,\dots,m\}\) let \(A^l_{i j}\in \mathbb L^2(\mathbb R^m)\) be such that \(A^l_{ij}=-A^l_{ji}\). If \(\mathcal R_l\) denotes the \(l\)th Riesz transform, \(l=1,\dots, m\), and \(\mathcal R_0\) is the identity in \(\mathbb R^m\), set \[ \Omega_{ij} =\sum_{l=0}^mA^l_{i j}\mathcal R_l. \]
The main result of this paper is the following: Let \(1<p<\infty\). If \(w \in L^2(\mathbb R^m)\) is a solution to the system \[ \int w_i|\nabla|^\mu\varphi=-\int\Omega_{ik}[w_k]\varphi,\quad\text{for all } \varphi\in C^\infty_0(D), \] where \(\mu\leq \min\{1,m/2\}\) or \(\mu= m/2\), and \(w\) also satisfies \[ \sup_{B_\rho\subset D}\rho^{\frac(2\mu-m){2}}||w||_{2,B_\rho}<\infty \] then \(w\in L^p_{\mathrm{loc}}(D)\), provided that all the quantities \[ \sup_{B_\rho(x),x\in D}\rho^{\frac{(2\mu-m)}{2}}||A^l_{ij}| |_{2,B_\rho} \] are sufficiently small.

MSC:

58E20 Harmonic maps, etc.
35J60 Nonlinear elliptic equations
35S05 Pseudodifferential operators as generalizations of partial differential operators
35B65 Smoothness and regularity of solutions to PDEs
35J47 Second-order elliptic systems

References:

[1] Adams, D.R.: A note on Riesz potentials. Duke Math. J. 42(4), 765-778 (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[2] Blatt, S., Reiter, P., Schikorra, A.: Harmonic analysis meets critical knots (stationary points of the moebius energy are smooth. Trans. AMS (accepted) (2014) · Zbl 1335.49074
[3] Chanillo, S.: A note on commutators. Indiana Univ. Math. J. 31(1), 7-16 (1982) · Zbl 0523.42015 · doi:10.1512/iumj.1982.31.31002
[4] Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103(3), 611-635 (1976) · Zbl 0326.32011 · doi:10.2307/1970954
[5] Da Lio, F.: Fractional harmonic maps into manifolds in odd dimension \[n>1\] n>1. Calc. Var. PDE 48(3-4), 421-445 (2013) · Zbl 1281.58007 · doi:10.1007/s00526-012-0556-6
[6] Da Lio, F., Rivière, T.: Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps. Adv. Math. 227(3), 1300-1348 (2011) · Zbl 1219.58004 · doi:10.1016/j.aim.2011.03.011
[7] Da Lio, F., Rivière, T.: Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres. Anal. PDE 4(1), 149-190 (2011) · Zbl 1241.35035 · doi:10.2140/apde.2011.4.149
[8] Da Lio, F., Schikorra, A.: n/p-harmonic maps: regularity for the sphere case. Adv. Calc. Var. 7, 1-26 (2014) · Zbl 1281.49034 · doi:10.1515/acv-2012-0107
[9] Fefferman, C., Stein, E.M.: \[H^p\] Hp spaces of several variables. Acta Math. 129(3-4), 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[10] Frehse, J.: A discontinuous solution of a mildly nonlinear elliptic system. Math. Z. 134, 229-230 (1973) · Zbl 0267.35038 · doi:10.1007/BF01214096
[11] Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of mathematics studies, vol. 105. Princeton University Press, US (1983) · Zbl 0516.49003
[12] Grafakos, L.: Classical Fourier Analysis, 2nd edn. Springer, Berlin (2008) · Zbl 1220.42001
[13] Grüter, M.: Conformally invariant variational integrals and the removability of isolated singularities. Manuscripta Math. 47, 85-104 (1984) · Zbl 0543.49020 · doi:10.1007/BF01174588
[14] Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Série I, 312, 591-596 (1991) · Zbl 0728.35015
[15] Hunt, R.: On \[L(p, q)\] L(p,q) Spaces. L’Enseignement Mathématique 12, 249-276 (1966) · Zbl 0181.40301
[16] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Comm. Pure Appl. Math. 41(7), 891-907 (1988) · Zbl 0671.35066 · doi:10.1002/cpa.3160410704
[17] Landkof, N.S.: Foundations of Modern Potential Theory. Springer, Berlin (1972) · Zbl 0253.31001 · doi:10.1007/978-3-642-65183-0
[18] Millot, V., Sire, Y.: On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres Archive for Rational Mechanics and Analysis 215(1), 125-210. doi:10.1007/s00205-014-0776-3 (2012) · Zbl 1372.35291
[19] Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1-22 (2007) · Zbl 1128.58010 · doi:10.1007/s00222-006-0023-0
[20] Rivière, T., Struwe, M.: Partial regularity for harmonic maps and related problems. Commun. Pure Appl. Math. 61(4), 451-463 (2008) · Zbl 1144.58011 · doi:10.1002/cpa.20205
[21] Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach Science, Yverdon (1993) · Zbl 0818.26003
[22] Schikorra, A.: A remark on gauge transformations and the moving frame method. Ann. Inst. H. Poincaré 27, 503-515 (2010) · Zbl 1187.35054 · doi:10.1016/j.anihpc.2009.09.004
[23] Schikorra, A.: Regularity of n/2-harmonic maps into spheres. PhD-thesis. arXiv:1003.0646v1 · Zbl 1237.58018
[24] Schikorra,A.: Interior and Boundary-Regularity of Fractional Harmonic Maps. arXiv:1103.5203 (2011) · Zbl 1151.58011
[25] Schikorra, A.: Regularity of n/2-harmonic maps into spheres. J. Differ. Equ. 252, 1862-1911 (2012) · Zbl 1237.58018 · doi:10.1016/j.jde.2011.08.021
[26] Schikorra, A.: On commutators and product rules of nonlocal operators (in preparation) (2014) · Zbl 1270.35152
[27] Semmes, S.: A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller. Commun. Partial Differ. Equ. 19(1-2), 277-319 (1994) · Zbl 0836.35030 · doi:10.1080/03605309408821017
[28] Sharp, B.: Higher integrability for solutions to a system of critical elliptic PDE. Methods Appl. Anal. 21(2), 221-240 (2014) · Zbl 1315.58013
[29] Sharp, B., Topping, P.: Decay estimates for Rivière’s equation, with applications to regularity and compactness. Trans. AMS 365(5), 2317-2340 (2013) · Zbl 1270.35152 · doi:10.1090/S0002-9947-2012-05671-6
[30] Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[31] Struwe, M.: Partial regularity for biharmonic maps, revisited. Calc. Var. Partial Differ. Equ. 33(2), 249-262 (2008) · Zbl 1151.58011 · doi:10.1007/s00526-008-0175-4
[32] Tao, T.: Harmonic Analysis in the Phase Plane. Lecture Notes. http://www.math.ucla.edu/ tao/254a.1.01w/ (2001) · Zbl 1237.58018
[33] Tartar, L.: Remarks on oscillations and Stokes’ equation.In: Macroscopic Modelling of Turbulent Flows (Nice, 1984), volume 230 of Lecture Notes in Phys., pp. 24-31. Springer, Berlin (1985) · Zbl 0611.76042
[34] Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3. Springer, Berlin (2007) · Zbl 1126.46001
[35] Uhlenbeck, K.K.: Connections with \[L^p\] Lp bounds on curvature. Commun. Math. Phys. 83(1), 31-42 (1982) · Zbl 0499.58019 · doi:10.1007/BF01947069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.