×

Inverse Jacobi multipliers: recent applications in dynamical systems. (English) Zbl 1348.37083

Ibáñez, Santiago (ed.) et al., Progress and challenges in dynamical systems. Proceedings of the international conference “Dynamical systems: 100 years after Poincaré”, Gijón, Spain, September 3–7, 2012. Berlin: Springer (ISBN 978-3-642-38829-3/hbk; 978-3-642-40137-4/ebook). Springer Proceedings in Mathematics & Statistics 54, 127-141 (2013).
Summary: In this paper we show novel applications of the inverse Jacobi multiplier focusing on questions of bifurcations and existence of periodic solutions admitted by both autonomous and non-autonomous systems of ordinary differential equations. In the autonomous case we focus on dimension \(n \geq 3\) whereas in the non-autonomous we study the cases with \(n \geq 2\). We summarize results already published and additionally we state some recent results to appear. The principal object of this research is two fold: first to prove the existence and smoothness of inverse Jacobi multiplier \(V\) in the region of interest in the phase space and second to show that the invariant set under the flow given by the zero-set of an inverse Jacobi multiplier contains under some assumptions orbits which are relevant in its phase portrait such as periodic orbits, limit cycles, stable, unstable and center manifolds and so on. In the non-autonomous \(T\)-periodic case we show some relationships between \(T\)-periodic orbits and \(T\)-periodic inverse Jacobi multipliers.
For the entire collection see [Zbl 1275.37001].

MSC:

37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
37C10 Dynamics induced by flows and semiflows
37C60 Nonautonomous smooth dynamical systems
37C27 Periodic orbits of vector fields and flows
34C23 Bifurcation theory for ordinary differential equations
37C80 Symmetries, equivariant dynamical systems (MSC2010)
Full Text: DOI

References:

[1] Belitskii, G. R., Smooth equivalence of germs of vector fields with a single zero eigenvalue or a pair of purely imaginary eigenvalues, Funct. Anal. Appl., 20, 253-259 (1986) · Zbl 0657.58027 · doi:10.1007/BF01083490
[2] Berrone, L. R.; Giacomini, H., Inverse Jacobi multipliers, Rend. Circ. Mat. Palermo (2), 52, 77-130 (2003) · Zbl 1196.34038
[3] Bibikov, Y.N.: Local Theory of Nonlinear Analytic Ordinary Differential Equations. Lecture Notes in Mathematics, vol. 702. Springer, New York (1979) · Zbl 0404.34005
[4] Buică, A.; García, I. A.; Maza, S., Existence of inverse Jacobi multipliers around Hopf points in \({\mathbb{R}}^3 \) : emphasis on the center problem, J. Differ. Equ., 252, 6324-6336 (2012) · Zbl 1252.37040 · doi:10.1016/j.jde.2012.03.009
[5] Buică, A., García, I.A.: Inverse Jacobi multipliers for non-autonomous differential systems (2013, preprint)
[6] Buică, A., García, I.A., Maza, S.: Multiple Hopf bifurcation in \({\mathbb{R}}^3\) and inverse Jacobi multipliers (2013, preprint) · Zbl 1346.37050
[7] Buică, A., García, I.A., Maza, S.: Some remarks on inverse Jacobi multipliers around Hopf points (2013, preprint) · Zbl 1316.37028
[8] Darboux, G., De l’emploi des solutions particulières algébriques dans l’intégration des systèmes d’équations différentielles algébriques, Acad. Sci. Paris C. R., 86, 1012 (1878) · JFM 10.0214.04
[9] García, I. A.; Grau, M., A survey on the inverse integrating factor, Qual. Theory Dyn. Syst., 9, 115-166 (2010) · Zbl 1364.34005 · doi:10.1007/s12346-010-0023-8
[10] García, I. A.; Giacomini, H.; Grau, M., The inverse integrating factor and the Poincaré map, Trans. Am. Math. Soc., 362, 3591-3612 (2010) · Zbl 1203.37086 · doi:10.1090/S0002-9947-10-05014-2
[11] García, I. A.; Giné, J.; Maza, S., Periodic solutions of second-order differential equations with two-dimensional Lie point symmetry algebra, Nonlinear Anal. Real World Appl., 11, 4128-4140 (2010) · Zbl 1206.34052 · doi:10.1016/j.nonrwa.2010.04.002
[12] García, I.A., Maza, S., Shafer, D.S.: Properties of monodromic points on center manifolds in \({\mathbb{R}}^3\) via Lie symmetries (2013, preprint) · Zbl 1311.37036
[13] Giacomini, H.; Llibre, J.; Viano, M., On the nonexistence, existence, and uniqueness of limit cycles, Nonlinearity, 9, 501-516 (1996) · Zbl 0886.58087 · doi:10.1088/0951-7715/9/2/013
[14] Jacobi, C. G.J., Sul principio dell’ultimo moltiplicatore, e suo uso come nuovo principio generale di meccanica, Giornale Arcadico di Scienze Lettere ed Arti, 99, 129-146 (1844)
[15] Lie, S.: Verallgemeinerung und neue Verwertung der Jacobischen Multiplikatortheorie. Forhandlinger Christiania 1874, 255-274 (1875). Reprinted in Abhandlungen 3, 188-205. [November 1874.]
[16] Llibre, J.; Pantazi, C., Darboux theory of integrability for a class of nonautonomous vector fields, J. Math. Phys., 50, 19 (2009) · Zbl 1283.34027
[17] Llibre, J.; Peralta-Salas, D., A Note on the first integrals of vector fields with integrating factors and normalizers, SIGMA, 8, 1-9 (2012) · Zbl 1247.34002
[18] Mahdi, A.; Pessoa, C.; Shafer, D. S., Centers on center manifolds in the Lü system, Phys. Lett. A, 375, 3509-3511 (2011) · Zbl 1252.70046 · doi:10.1016/j.physleta.2011.08.022
[19] Mello, L. F.; Coelho, S. F., Degenerate Hopf bifurcations in the Lü system, Phys. Lett. A, 373, 1116-1120 (2009) · Zbl 1228.70014 · doi:10.1016/j.physleta.2009.01.049
[20] Nucci, M. C.; Leach, P. G.L., Jacobi’s last multiplier and symmetries for the Kepler problem plus a lineal story, J. Phys. A, 37, 7743-7753 (2004) · Zbl 1065.70007 · doi:10.1088/0305-4470/37/31/007
[21] Nucci, M. C.; Leach, P. G.L., Jacobi’s last multiplier and the complete symmetry group of the Ermakov-Pinney equation, J. Nonlinear Math. Phys., 12, 305-320 (2005) · Zbl 1079.34026 · doi:10.2991/jnmp.2005.12.2.10
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.