×

Persistence and extinction of an impulsive stochastic logistic model with infinite delay. (English) Zbl 1345.90006

The authors consider the following one-dimensional stochastic differential equation with infinite time delay and fixed jump times \(t_k\uparrow\infty\): \[ \begin{aligned} & d x(t) = x(t)\bigg\{r(t)-a(t)x(t)+b(t)x(t-\tau)+c(t)\int_{-\infty}^0x(t+\theta)d\mu(\theta) \bigg\}\\ & d t +\sigma_1(t)x(t) d W_1(t) +\sigma_2(t)x^2(t) d W_2(t)\end{aligned} \] for \( t\neq t_k\), and \[ x(t_k+)= (1+h_k) x(t_k),\;\;k\geq 1, \] where \(r, a, b, c, \sigma_i\in C_b([0,\infty))\), \(\tau\) is a positive constant stands for the finite time delay, \(\mu\) is a probability measure on \((-\infty,0]\) with finite exponential moment which gives the infinite time delay, \((W_1(t), W_2(t))\) is a standard two-dimensional Brownian motion, and \(h_k\) are constants. Sufficient conditions are presented for the distinction and the (weak) persistence of the solution. Simulations are made to illustrate the main results. It would be nice to consider the random jump time cases, for instance, by adding an additional linear jump noise to the SDE.

MSC:

90B06 Transportation, logistics and supply chain management
60H40 White noise theory
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34K25 Asymptotic theory of functional-differential equations
34K45 Functional-differential equations with impulses
34K50 Stochastic functional-differential equations

References:

[1] K. Gopalsamy: Global asymptotic stability in Volterra’s population systems , J. Math. Biol. 19 (1984), 157-168. · Zbl 0535.92020 · doi:10.1007/BF00277744
[2] K. Gopalsamy: Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Acad. Publ., Dordrecht, 1992. · Zbl 0752.34039
[3] Y. Kuang and H.L. Smith: Global stability for infinite delay Lotka-Volterra type systems , J. Differential Equations 103 (1993), 221-246. · Zbl 0786.34077 · doi:10.1006/jdeq.1993.1048
[4] G.-H. Cui and X.-P. Yan: Stability and bifurcation analysis on a three-species food chain system with two delays , Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 3704-3720. · Zbl 1219.92062 · doi:10.1016/j.cnsns.2010.12.042
[5] X. He and K. Gopalsamy: Persistence, attractivity, and delay in facultative mutualism , J. Math. Anal. Appl. 215 (1997), 154-173. · Zbl 0893.34036 · doi:10.1006/jmaa.1997.5632
[6] B. Lisena: Global attractivity in nonautonomous logistic equations with delay , Nonlinear Anal. Real World Appl. 9 (2008), 53-63. · Zbl 1139.34052 · doi:10.1016/j.nonrwa.2006.09.002
[7] Y. Kuang: Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, MA, 1993. · Zbl 0777.34002
[8] T.C. Gard: Persistence in stochastic food web models , Bull. Math. Biol. 46 (1984), 357-370. · Zbl 0533.92028 · doi:10.1007/BF02462011
[9] T.C. Gard: Stability for multispecies population models in random environments , Nonlinear Anal. 10 (1986), 1411-1419. · Zbl 0598.92017 · doi:10.1016/0362-546X(86)90111-2
[10] R.M. May: Stability and Complexity in Model Ecosystems, Princeton Univ. Press, Princeton, NJ, 2001.
[11] A. Bahar and X. Mao: Stochastic delay Lotka-Volterra model , J. Math. Anal. Appl. 292 (2004), 364-380. · Zbl 1043.92034 · doi:10.1016/j.jmaa.2003.12.004
[12] D. Jiang, N. Shi and X. Li: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation , J. Math. Anal. Appl. 340 (2008), 588-597. · Zbl 1140.60032 · doi:10.1016/j.jmaa.2007.08.014
[13] X. Li and X. Mao: Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation , Discrete Contin. Dyn. Syst. 24 (2009), 523-545. · Zbl 1161.92048 · doi:10.3934/dcds.2009.24.523
[14] G. Hu and K. Wang: On stochastic logistic equation with Markovian switching and white noise , Osaka J. Math. 48 (2011), 959-986. · Zbl 1239.60045
[15] M. Liu and K. Wang: Persistence and extinction in stochastic non-autonomous logistic systems , J. Math. Anal. Appl. 375 (2011), 443-457. · Zbl 1214.34045 · doi:10.1016/j.jmaa.2010.09.058
[16] V. Lakshmikantham, D.D. Baĭ nov and P.S. Simeonov: Theory of Impulsive Differential Equations, World Sci. Publishing, Teaneck, NJ, 1989.
[17] D. Baĭ nov and P. Simeonov: Impulsive Differential Equations: Periodic Solutions and Applications, Longman Sci. Tech., Harlow, 1993.
[18] S. Ahmad and I.M. Stamova: Asymptotic stability of competitive systems with delays and impulsive perturbations , J. Math. Anal. Appl. 334 (2007), 686-700. · Zbl 1153.34044 · doi:10.1016/j.jmaa.2006.12.068
[19] J.O. Alzabut and T. Abdeljawad: On existence of a globally attractive periodic solution of impulsive delay logarithmic population model , Appl. Math. Comput. 198 (2008), 463-469. · Zbl 1163.92033 · doi:10.1016/j.amc.2007.08.024
[20] M. Liu and K. Wang: On a stochastic logistic equation with impulsive perturbations , Comput. Math. Appl. 63 (2012), 871-886. · Zbl 1247.60085 · doi:10.1016/j.camwa.2011.11.003
[21] J. Hou, Z. Teng and S. Gao: Permanence and global stability for nonautonomous \(N\)-species Lotka-Volterra competitive system with impulses , Nonlinear Anal. Real World Appl. 11 (2010), 1882-1896. · Zbl 1200.34051 · doi:10.1016/j.nonrwa.2009.04.012
[22] F.V. Atkinson and J.R. Haddock: On determining phase spaces for functional-differential equations , Funkcial. Ekvac. 31 (1988), 331-347. · Zbl 0665.45004
[23] J.K. Hale and J. Kato: Phase space for retarded equations with infinite delay , Funkcial. Ekvac. 21 (1978), 11-41. · Zbl 0383.34055
[24] L. Huaping and M. Zhien: The threshold of survival for system of two species in a polluted environment , J. Math. Biol. 30 (1991), 49-61. · Zbl 0745.92028 · doi:10.1007/BF00168006
[25] T.G. Hallam and Z.E. Ma: Persistence in population models with demographic fluctuations , J. Math. Biol. 24 (1986), 327-339. · Zbl 0606.92022 · doi:10.1007/BF00275641
[26] F.Y. Wei: The basic theory of stochastic functional differential equations with infinite delay , China Doctor Dissertation Full-text Database, 2006.
[27] F. Wei and Y. Cai: Existence, uniqueness and stability of the solution to neutral stochastic functional differential equations with infinite delay under non-Lipschitz conditions , Adv. Difference Equ. (2013). · Zbl 1390.60221
[28] Y. Xu: The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay at the phase space \(\mathrsfs{B}\) , Math. Appl. (Wuhan) 20 (2007), 830-836. · Zbl 1150.34604
[29] Y. Xu, F. Wu and Y. Tan: Stochastic Lotka-Volterra system with infinite delay , Comput. Appl. Math. 232 (2009), no. 2, 472-480. · Zbl 1205.34103 · doi:10.1016/j.cam.2009.06.023
[30] X. Mao: Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 1997. · Zbl 0892.60057
[31] M. Liu and K. Wang: Analysis of a stochastic autonomous mutualism model , J. Math. Anal. Appl. 402 (2013), 392-403. · Zbl 1417.92141 · doi:10.1016/j.jmaa.2012.11.043
[32] X. Mao and C. Yuan: Stochastic Differential Equations with Markovian Switching, Imp. Coll. Press, London, 2006. · Zbl 1126.60002 · doi:10.1142/p473
[33] Y. Song and C.T.H. Baker: Qualitative behaviour of numerical approximations to Volterra integro-differential equations , J. Comput. Appl. Math. 172 (2004), 101-115. · Zbl 1059.65129 · doi:10.1016/j.cam.2003.12.049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.