×

Weighted Solyanik estimates for the Hardy-Littlewood maximal operator and embedding of \(\mathcal A_\infty\) into \(\mathcal A_p\). (English) Zbl 1345.42025

Let \(M_w\) be the uncentered Hardy-Littlewood maximal operator with respect to a measure \(\mu\), that is \[ M_w f(x):= \sup_{x\in Q} \int_Q |f(y)| w(y) \;dy, \;x\in \mathbb{R}^n, \] where the supremum is taken over all cubes \(Q\) in \(\mathbb{R}^n\) containing the point \(x\) with sides parallel to the axis.
The paper deals with the asymptotic behavior, as \(\alpha \rightarrow 1^{-}\), of the so called sharp Tauberian constant defined as \[ C_w(\alpha)=\sup_{E:0<w(E)<\infty} w(E)^{-1} w(\{x\in \mathbb{R}^n: \;M_w\chi_{E}(x)>\alpha \}). \] In particular, it is investigated whether \[ \lim_{\alpha\to 1^{-}}C_w(\alpha)=1. \] The motivation is due to a result of A. A. Solyanik, who showed that in the case \(w\equiv 1\), which corresponds to the Lebesgue measure, \(C(\alpha)-1\simeq (1-\alpha)^{1/n}\) when \(\alpha \to 1^{-}\). The authors proved that the answer is also positive for the weighted maximal operator \(M_w\).
Also, the behavior of the sharp Tauberian constant for \(M\), the maximal uncentered Hardy-Littlewood operator with respect to the Lebesgue measure, is studied. More precisely, it is shown that \(\displaystyle{\lim_{\alpha\to 1^{-}} C^w(\alpha)=1}\) if and only \(w\) belongs to the Muckenhoupt class of weights \(A_{\infty}=\displaystyle{\bigcup_{p\geq 1} A_p}\). In this case, \(C^w\) is defined in the same way as \(C_w\) but replacing the uncentered weighted maximal operator \(M_w\) by \(M\). The study of the Tauberian constant \(C^w\) makes it possible to obtain a quantitative result about the \(A_{\infty}\)-constant of the weight that, roughly speaking, establishes that this constant is equivalent to the smallest number \(c>1\) such that \[ C^w(\alpha)-1 \lesssim (1-\alpha)^{1/c} \;\;\text{as} \;\;\alpha\to 1^{-}. \]

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis

References:

[1] Beznosova, O.V., Hagelstein, P.A.: Continuity of halo functions associated to homothecy invariant density bases. Colloquium Mathematicum 134(2), 235-243 (2014) · Zbl 1293.42020 · doi:10.4064/cm134-2-7
[2] Beznosova, O., Reznikov, A.: Sharp estimates involving \[A_\infty\] A∞ and \[L\log L\] LlogL constants, and their applications to PDE. Algebra i Anal. 26(1), 40-67 (2014). MR3234812 · Zbl 1325.42029
[3] Cabrelli, C., Lacey, M.T., Molter, U., Pipher, J.C.: Variations on the theme of Journé’s lemma. Houston J. Math. 32(3), 833-861 (2006). MR2247912 (2007e:42011) · Zbl 1140.42003
[4] Córdoba, A., Fefferman, R.: A geometric proof of the strong maximal theorem. Ann. Math. 102(1), 95-100 (1975). MR0379785 (52 #690) · Zbl 0324.28004 · doi:10.2307/1970976
[5] Córdoba, A., Fefferman, R.: On the equivalence between the boundedness of maximal and multiplier operators in Fourier analysis. Proc. Natl. Acad. Sci. USA 74(2), 423-425 (1977). MR0433117 · Zbl 0342.42003 · doi:10.1073/pnas.74.2.423
[6] Dindoš, M., Wall, T.: The sharp \[A_p\] Ap constant for weights in a reverse-Hölder class. Rev. Mat. Iberoam. 25(2), 559-594 (2009). MR2569547 (2011b:42041) · Zbl 1174.42024 · doi:10.4171/RMI/576
[7] Duoandikoetxea, J., Martín-Reyes, F.J., Ombrosi, S.: Calderón weights as Muckenhoupt weights. Indiana Univ. Math. J. 62(3), 891-910 (2013). MR3164849 · Zbl 1311.42048 · doi:10.1512/iumj.2013.62.4971
[8] Fujii, N.: Weighted bounded mean oscillation and singular integrals. Math. Japon. 22(5), 529-534 (1977/78). MR0481968 (58 #2058) · Zbl 0385.26010
[9] Füredi, Z., Loeb, P.A.: On the best constant for the Besicovitch covering theorem. Proc. Am. Math. Soc. 121(4), 1063-1073 (1994). MR1249875 (95b:28003) · Zbl 0802.28002 · doi:10.2307/2161215
[10] García-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. North-Holland Mathematics Studiesm, vol. 116. North-Holland Publishing Co., Amsterdam (1985). Notas de Matemática [Mathematical Notes], vol. 104 (1985) MR807149 (87d:42023) · Zbl 0578.46046
[11] Garnett, J.B.: Bounded analytic functions. Graduate Texts in Mathematics, 1st edn. Springer, New York (2007). MR2261424 (2007e:30049) · Zbl 0469.30024
[12] de Guzmán, M.: Differentiation of integrals in \[{\bf R}^nRn\]. Measure Theory (Proc. Conf., Oberwolfach, 1975), Lecture Notes in Math., vol. 541, pp. 181-185. Springer, Berlin (1976). MR0476978 (57 #16523) · Zbl 0327.26010
[13] Hagelstein, P. A., Luque, T., Parissis, I.: Tauberian conditions, Muckenhoupt weights, and differentiation properties of weighted bases. Trans. Am. Math. Soc. (To appear). arXiv:1304.1015 · Zbl 1330.42013
[14] Hagelstein, P.A., Parissis, I.: Solyanik estimates in harmonic analysis. In: Special Functions, Partial Differential Equations, and Harmonic Analysis. Springer Proceedings in Mathematics & Statistics, vol. 108, pp. 87-103. Springer, Heidelberg (2014) · Zbl 1323.42020
[15] Hagelstein, P.A., Stokolos, A.: Tauberian conditions for geometric maximal operators. Trans. Am. Math. Soc. 361(6), 3031-3040 (2009). MR2485416 (2010b:42023) · Zbl 1170.42007 · doi:10.1090/S0002-9947-08-04563-7
[16] Hruščev, S.V.: A description of weights satisfying the \[A_{\infty }\] A∞ condition of Muckenhoupt. Proc. Am. Math. Soc. 90(2), 253-257 (1984). MR727244 (85k:42049) · Zbl 0539.42009
[17] Hytönen, T., Pérez, C.: Sharp weighted bounds involving \[A_\infty\] A∞. Anal. PDE 6(4), 777-818 (2013). MR3092729 · Zbl 1283.42032 · doi:10.2140/apde.2013.6.777
[18] Hytönen, T., Pérez, C., Rela, E.: Sharp reverse Hölder property for \[A_\infty\] A∞ weights on spaces of homogeneous type. J. Funct. Anal. 263(12), 3883-3899 (2012). MR2990061 · Zbl 1266.42045 · doi:10.1016/j.jfa.2012.09.013
[19] Korey, M.B.: Ideal weights: asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation. J. Fourier Anal. Appl. 4(4-5), 491-519 (1998). MR1658636 (99m:42032) · Zbl 0943.42008 · doi:10.1007/BF02498222
[20] Lerner, A.K., Moen, K.: Mixed \[A_p\] Ap-\[A_\infty\] A∞ estimates with one supremum. Studia Math. 219(3), 247-267 (2013). MR3145553 · Zbl 1317.42015 · doi:10.4064/sm219-3-5
[21] Mitsis, T.: Embedding \[B_\infty B\]∞ into Muckenhoupt classes. Proc. Am. Math. Soc. 133(4), 1057-1061 (2005). (electronic) MR2117206 (2005i:42031) · Zbl 1063.42010 · doi:10.1090/S0002-9939-04-07803-7
[22] Politis, A.: Sharp results on the relation between weight spaces and BMO. ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.). The University of Chicago 1995. MR2716561
[23] Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973). MR0365062 · Zbl 0253.46001
[24] Solyanik, A.A.: On halo functions for differentiation bases. Mat. Zametki, 54(6), 82-89, 160 (1993). (Russian, with Russian summary): English transl., Math. Notes, 54 (1993) (5-6), 1241-1245 (1994) MR1268374 (95g:42033) · Zbl 0836.42014
[25] Wik, I.: On Muckenhoupt’s classes of weight functions. Studia Math. 94(3), 245-255 (1989). MR1019792 (90j:42029) · Zbl 0686.42012
[26] Wilson, J.: Michael weighted inequalities for the dyadic square function without dyadic \[A_\infty\] A∞. Duke Math. J. 55(1), 19-50 (1987). MR883661 (88d:42034) · Zbl 0639.42016 · doi:10.1215/S0012-7094-87-05502-5
[27] Wilson, M.: Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics, vol. 1924. Springer, Berlin (2008). MR2359017 (2008m:42034) · Zbl 1138.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.