×

Energy of surface states for 3D magnetic Schrödinger operators. (English) Zbl 1344.35116

Let \(\Omega \subset \mathbb{R}^3\) be an interior or exterior domain with compact and smooth boundary \(\partial \Omega \subset \mathbb{R}^3\). Let also \(h>0\) and \(\mathbf{A} \in C^\infty(\bar{\Omega};\mathbb{R}^3)\) be a magnetic vector potential such that \(b:=\inf_{x\in\bar{\Omega}}|\operatorname{curl}\mathbf{A}(x)|>0\). In the Hilbert space \(L^2(\Omega)\), consider the Neumann Schrödinger operator with magnetic field \[ \mathcal{P}_h = (-\text{i}h\nabla + \mathbf{A})^2. \] The main result in the paper under review is a semi-classical formula for the sum of eigenvalues of \(\mathcal{P}_h\). The leading order term is described by means of the eigenvalues of auxiliary operators on the semi-axis and the half-plane. This result can be seen as a generalization of the results for two-dimansional Schrödinger operators from [S. Fournais and A. Kachmar, J. Lond. Math. Soc., II. Ser. 80, No. 1, 233–255 (2009; Zbl 1179.35203)].

MSC:

35Q40 PDEs in connection with quantum mechanics
35P15 Estimates of eigenvalues in context of PDEs
35J10 Schrödinger operator, Schrödinger equation

Citations:

Zbl 1179.35203

References:

[1] Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45(4), 847-883 (1978) · Zbl 0399.35029 · doi:10.1215/S0012-7094-78-04540-4
[2] Bolley, C., Helffer, B.: An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material. Ann. Inst. H. Poincaré Phys. Théor. 58(2), 198-233 (1993) · Zbl 0779.35104
[3] Bonnaillie, V.: Analyse mathémathique de la supraconductivité dans un domaine à coins : méthodes semi-classiques et numérique. Thèse de doctorat, Université Paris 11 (2003)
[4] Bonnaillie, V.: On the fundamental state energy for Schrödinger operator with magnetic field in domains with corners. Asymptot. Anal. 41(3-4), 215-158 (2005) · Zbl 1067.35054
[5] Bonnaillie-Noël, V., Dauge, M., Popoff, N., Raymond, N.: Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann condition. Z. Angew. Math. Phys. 63(2), 203-231 (2012) · Zbl 1238.35070 · doi:10.1007/s00033-011-0163-y
[6] Colin de Verdière, Y.: L’asymptotique de Weyl pour les bouteilles magnétiques. Commun. Math. Phys. 105, 327-335 (1986) · Zbl 0612.35102 · doi:10.1007/BF01211105
[7] Dauge, M., Helffer, B.: Eigenvalues variation I. Neumann problem for Sturm-Liouville operators. J. Differ. Equ. 104(2), 243-262 (1993) · Zbl 0784.34021 · doi:10.1006/jdeq.1993.1071
[8] Erdös, L., Solovej, J.P.: Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates. Commun. Math. Phys. 188, 599-656 (1997) · Zbl 0909.47052 · doi:10.1007/s002200050181
[9] Evans, W.D., Lewis, R.T., Siedentop, H., Solovej, J.P.: Counting eigenvalues using coherent states with an application to Dirac and Schrödinger operators in the semi-classical limit. Ark. Mat. 34(2), 265-285 (1996) · Zbl 0862.35097 · doi:10.1007/BF02559548
[10] Fock, V.: Bemerkung zur Quantelung des harmonischen oszillators im magnetfeld. Z. Phys. A 47(5-6), 446-448 (1928) · JFM 54.0966.02 · doi:10.1007/BF01390750
[11] Fournais, S.: Spectral confinement and current for atoms in strong magnetic fields. Adv. Math. 212(2), 407-457 (2007) · Zbl 1118.81079 · doi:10.1016/j.aim.2006.10.013
[12] Fournais, S., Helffer, B.: Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and Their Applications, vol. 77. Birkhäuser Boston Inc., Boston (2010) · Zbl 1256.35001
[13] Fournais, S., Kachmar, A.: On the energy of bound states for a magnetic Schrödinger operator. J. Lond. Math. Soc. 80(1), 233-255 (2009) · Zbl 1179.35203 · doi:10.1112/jlms/jdp028
[14] Fournais, S., Kachmar, A.: The ground state energy of the three dimensional Ginzburg-Landau functional. Part I: bulk regime. Commun. Partial Differ. Equ. 38(2), 339-383 (2013) · Zbl 1267.82140 · doi:10.1080/03605302.2012.717156
[15] Fournais, S., Kachmar, A., Persson, M.: The ground state energy of the three dimensional Ginzburg-Landau functional. Part II: surface regime. J. Math. Pures Appl. 99(3), 343-374 (2013) · Zbl 1260.35218 · doi:10.1016/j.matpur.2012.09.002
[16] Frank, R.: On the asymptotic number of edge states for magnetic Schrödinger operators. Proc. Lond. Math. Soc. 95(1), 1-19 (2007) · Zbl 1131.35076 · doi:10.1112/plms/pdl024
[17] Frank, R., Ekholm, T.: On Lieb-Thirring inequalities for Schrödinger operators with virtual level. Commun. Math. Phys. 264(3), 725-740 (2004) · Zbl 1106.81039
[18] Frank, R., Geisinger, L.: Refined semi-classical asymptotics for fractional powers of the Laplace operator. Bull. Math. Sci. 2(2), 281-319 (2012) · Zbl 1253.35090 · doi:10.1007/s13373-012-0028-5
[19] Helffer, B.: Introduction to the Semiclassical Analysis for the Schrödinger Operator and Applications. Springer Lecture Notes in Mathematics, vol. 1336. Springer, Berlin (1988) · Zbl 0647.35002
[20] Helffer, B., Mohamed, A.: Semi-classical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138(1), 40-81 (1996) · Zbl 0851.58046 · doi:10.1006/jfan.1996.0056
[21] Helffer, B., Morame, A.: Magnetic bottles for the Neumann problem: curvature effects in the case of dimension 3 (general case). Ann. Sci. Ecole Norm. Super. 37(1), 105-170 (2004) · Zbl 1057.35061
[22] Helffer, B., Morame, A.: Magnetic bottles in connection with superconductivity. J. Func. Anal. 181(2), 604-680 (2001) · Zbl 1078.81023 · doi:10.1006/jfan.2001.3773
[23] Helffer, B., Morame, A.: Magnetic bottles for the Neumann problem: the case of dimension 3. Spectral and inverse spectral theory (Goa, 2000). Proc. Indian Acad. Sci. Math. Sci. 112(1), 71-84 (2004) · Zbl 1199.81016 · doi:10.1007/BF02829641
[24] Kachmar, A.: Problèmes aux limites issues de la supraconductivité, Ph.D. thesis. University Paris-Sud/ Orsay (2007) · Zbl 0882.47056
[25] Kachmar, A.: Weyl asymptotics for magnetic Schrödinger operator and de Gennes’ boundary condition. Rev. Math. Phys. 20(8), 901-932 (2008) · Zbl 1167.82024 · doi:10.1142/S0129055X08003468
[26] Kachmar, A., Khochman, A.: Spectral asymptotics for magnetic Schrödinger operators in domains with corners. J. Spectr. Theory 3(4), 553-574 (2013) · Zbl 1295.81066 · doi:10.4171/JST/56
[27] Lieb, E.H., Solovej, J.P., Yngvason, J.: Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions. Commun. Math. Phys. 161(1), 77-124 (1994) · Zbl 0807.47058 · doi:10.1007/BF02099414
[28] Lu, K., Pan, X.-B.: Estimates of the upper critical field for the Ginzburg Landau equations of superconductivity. Phys. D 127, 73-104 (1999) · Zbl 0934.35174 · doi:10.1016/S0167-2789(98)00246-2
[29] Morame, A., Truc, F.: Remarks on the spectrum of the Neumann problem with magnetic field in the half space. J. Math. Phys. 46(1), 1-13 (2005) · Zbl 1076.82050 · doi:10.1063/1.1827922
[30] Persson, A.: Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8, 143-153 (1960) · Zbl 0145.14901
[31] Popoff, N.: Sur le spectre de l’opérateur de Schrödinger magnétique dans un domaine diédral, vol. 1. Thèse de doctorat. Université de Rennes (2012) · Zbl 1067.35054
[32] Raymond, N.: On the semiclassical 3D Neumann problem with variable magnetic field. Asymptot. Anal. 68, 1-40 (2010) · Zbl 1200.35202
[33] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. I-IV. Academic press, New York (1978) · Zbl 0401.47001
[34] Sigal, I.: Geometrical methods in the quantum many body problem. Nonexistence of very negative ions. Commun. Math. Phys. 85, 309-324 (1982) · Zbl 0503.47041 · doi:10.1007/BF01254462
[35] Simon, B.: Functional Integration and Quantum Physics, 2nd edn. AMS, Chelsea Publishing, Providence (2005) · Zbl 1061.28010
[36] Sobolev, A.: On the Lieb-Thirring estimates for the Pauli operator. Duke J. Math. 82(3), 607-635 (1996) · Zbl 0882.47056 · doi:10.1215/S0012-7094-96-08225-3
[37] Stenger, W., Weinstein, A.: Methods of Intermediate Problems for Eigenvalues: Theory and Ramifications. Mathematics in Science and Engineering, vol. 89. Academic Press, New York (1972) · Zbl 0291.49034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.