×

The Mazurkiewicz distance and sets that are finitely connected at the boundary. (English) Zbl 1342.30054

Summary: We study local connectedness, local accessibility and finite connectedness at the boundary, in relation to the compactness of the Mazurkiewicz completion of a bounded domain in a metric space. For countably connected planar domains we obtain a complete characterization. It is also shown exactly which parts of this characterization fail in higher dimensions and in metric spaces.

MSC:

30L99 Analysis on metric spaces

References:

[1] Adamowicz, T., Björn, A., Björn, J., Shanmugalingam, N.: Prime ends for domains in metric spaces. Adv. Math. 238, 459-505 (2013) · Zbl 1297.30056
[2] Aikawa, H., Hirata, K.: Doubling conditions for harmonic measure in John domains. Ann. Inst. Fourier (Grenoble) 58, 429-445 (2008) · Zbl 1151.31004 · doi:10.5802/aif.2357
[3] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17. European Mathematical Society, Zurich (2011) · Zbl 1231.31001 · doi:10.4171/099
[4] Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet problem for \[p\] p-harmonic functions on metric spaces. J. Reine Angew. Math. 556, 173-203 (2003) · Zbl 1018.31004
[5] Björn, A., Björn, J., Shanmugalingam, N.: The Perron method for \[p\] p-harmonic functions. J. Differ. Equ. 195, 398-429 (2003) · Zbl 1039.35033 · doi:10.1016/S0022-0396(03)00188-8
[6] Björn, A., Björn, J., Shanmugalingam, N.: The Dirichlet Problem for \[p\] p-Harmonic Functions with Respect to the Mazurkiewicz boundary. Preprint (2013) arXiv:1302.3887 · Zbl 1211.30067
[7] Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften vol. 319. Springer, Berlin (1999) · Zbl 0988.53001
[8] Fedorchuk, V. V. The fundamentals of dimension theory. In: General Topology I (Arkhangel’skiĭ., A. V., Pontryagin, L. S., eds.), Encyclopedia of Mathematical Sciences 17, pp. 111-224. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1988) (Russian). English transl.: pp. 91-192. Springer, Berlin (1990) · Zbl 0653.54023
[9] Freeman, D.M., Herron, D.A.: Bilipschitz homogeneity and inner diameter distance. J. Anal. Math. 111, 1-46 (2010) · Zbl 1211.30067 · doi:10.1007/s11854-010-0011-6
[10] Granlund, S., Lindqvist, P., Martio, O.: Note on the PWB-method in the nonlinear case Pacific. J. Math. 125, 381-395 (1986) · Zbl 0633.31004
[11] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, 2nd edn. Dover, Mineola (2006) · Zbl 1115.31001
[12] Herron, D.A., Sullivan, T.S.: Fractal inner chordarc disks. J. Anal. Math. 84, 173-205 (2001) · Zbl 0989.30012 · doi:10.1007/BF02788109
[13] Hocking, J.G., Young, G.S.: Topology. Dover, New York (1988) · Zbl 0718.55001
[14] Janiszewski, Z.: 0 rozcinaniu płaszczyzny przez kontinua [On separating the plane by continua]. Prace Mat.-Fiz. 26, 11-63 (Polish) (1915). http://matwbn.icm.edu.pl/index.php?jez=en · Zbl 1039.35033
[15] Karmazin, A. P.: Quasiisometries, the Theory of Prime Ends and Metric Structures on Domains. Surgut (2008) (Russian) · Zbl 0989.30012
[16] Kilpeläinen, T.: Potential theory for supersolutions of degenerate elliptic equations. Indiana Univ. Math. J. 38, 253-275 (1989) · Zbl 0688.31005 · doi:10.1512/iumj.1989.38.38013
[17] Kuratowski, K.: Topology, vol. 2. Academic Press, New York (1968) · Zbl 0158.40901
[18] Mazurkiewicz, S.: Sur une classification de points situés un sur continu arbitraire [O pewnej klasyfikacyi punktów leża̧cych na kontynuach dowolnych]. C. R. Soc. Sci. Lett. Varsovie 9(5), 428-442 (1916) (Polish with French summary at the end)
[19] Moore, R.L.: A connected and regular point set which contains no arc. Bull. Am. Math. Soc. 32, 331-332 (1926) · JFM 52.0600.03 · doi:10.1090/S0002-9904-1926-04210-5
[20] Moore, R.L.: Foundations of Point Set Theory, 2nd edn. American Mathematical Society, Providence (1962) · Zbl 0192.28901
[21] Munkres, J.R.: Topology, 2nd edn. Prentice-Hall, Upper Saddle River (2000) · Zbl 0951.54001
[22] Näkki, R.: Boundary behavior of quasiconformal mappings in \[n\] n-space. Ann. Acad. Sci. Fenn. Ser. A I Math. 484, 1-50 (1970) · Zbl 0209.11202
[23] Näkki, R.: Private communication. (2010) · Zbl 1216.30038
[24] Newman, M.H.A.: Elements of the Topology of Plane Sets of Points, 1st edn. Cambridge University Press, Cambridge (1939) · Zbl 0021.06704
[25] Ohtsuka, M.: Dirichlet Problem. Extremal Length and Prime Ends. Van Nostrand, Princeton (1970) · Zbl 0197.08404
[26] Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975) · Zbl 0298.30014
[27] Pommerenke, C.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992) · Zbl 0762.30001 · doi:10.1007/978-3-662-02770-7
[28] Rempe, L.: On prime ends and local connectivity. Bull. Lond. Math. Soc. 40, 817-826 (2008) · Zbl 1216.30038 · doi:10.1112/blms/bdn061
[29] Väisälä, J.: Lectures on \[n\] n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, vol. 229. Springer, Berlin (1971) · Zbl 0221.30031
[30] Whyburn, G.T.: Analytic Topology. American Mathematical Society Colloquium Publications, vol. 28. American Mathematical Society, Providence (1942) · Zbl 0061.39301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.