×

Thermodynamic approach to generalized continua. (English) Zbl 1341.80002

Contin. Mech. Thermodyn. 26, No. 3, 403-420 (2014); erratum ibid. 26, No. 3, 421–422 (2014).
Summary: Governing equations of dissipative generalized solid mechanics are derived by thermodynamic methods in the Piola-Kirchhoff framework using the Liu procedure. The isotropic small-strain case is investigated in more detail. The connection to the Ginzburg-Landau type evolution, dual internal variables, and a thermodynamic generalization of the standard linear solid model of rheology is demonstrated. Specific examples are chosen to emphasize experimental confirmations and predictions beyond less general approaches.

MSC:

80A05 Foundations of thermodynamics and heat transfer
80A10 Classical and relativistic thermodynamics

References:

[1] Mindlin, R.D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78, (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[2] Eringen, A.C.; Suhubi, E.S., Nonlinear theory of simple micro-elastic solids I, Int. J. Eng. Sci., 2, 189-203, (1964) · Zbl 0138.21202 · doi:10.1016/0020-7225(64)90004-7
[3] Germain, P., The method of virtual power in continuum mechanics. part 2: microstructure, SIAM J. Appl. Math., 25, 556-575, (1973) · Zbl 0273.73061 · doi:10.1137/0125053
[4] Eringen, A.C., Balance laws of micromorphic continua revisited, Int. J. Eng. Sci., 30, 805-810, (1992) · Zbl 0754.73079 · doi:10.1016/0020-7225(92)90109-T
[5] Eringen C.: Microcontinuum field theories I. Foundations and solids. 3nd edn. Springer, Berlin (1999) · Zbl 0953.74002 · doi:10.1007/978-1-4612-0555-5
[6] Lee, J.D.; Wang, X., Generalized micromorphic solids and fluids, Int. J. Eng. Sci., 49, 1378-1387, (2011) · Zbl 1205.05113 · doi:10.1016/j.ijengsci.2011.04.001
[7] Forest, S.; Amestoy, M., Hypertemperature in thermoelastic solids, C. R. Mec., 336, 347-353, (2008) · Zbl 1158.74343 · doi:10.1016/j.crme.2008.01.007
[8] Aslan, O., Forest S.: The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals. In: de Borst, R., Ramm, E. (eds.) Multiscale Methods in Computational Mechanics, Lecture Notes in Applied and Computational Mechanics, pp. 135-154. Springer, Berlin (2011) · Zbl 1323.74011
[9] Papenfuss, C.; Forest, S., Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom, J. Non-Equilib. Thermodyn., 31, 319-353, (2006) · Zbl 1119.80001 · doi:10.1515/JNETDY.2006.014
[10] Haupt P.: Non-equilibrium thermodynamics with applications to solids, volume 336 of Courses and Lectures, Chapter Thermodynamics of Solids. CISM-Course, Udine 1993, pp. 65-138. Springer, Wien (1993) · Zbl 1294.80002
[11] Gyarmati I.: Non-Equilibrium Thermodynamics /Field Theory and Variational Principles. Springer, Berlin (1970) · doi:10.1007/978-3-642-51067-0
[12] Ván, P., Muschik, W.: The structure of variational principles in nonequilibrium thermodynamics. In: Verhás, J. (ed.) Periodica Polytechnica, Physics and Nuclear Sciences, vol. 2/1-2, pp. 111-122 (1994)
[13] Ván, P.; Nyíri, B., Hamilton formalism and variational principle construction, Ann. Phys., 8, 331-354, (1999) · Zbl 0938.70013 · doi:10.1002/(SICI)1521-3889(199904)8:4<331::AID-ANDP331>3.0.CO;2-R
[14] Irwing, J.H.; Kirkwood, J.G., The statistical mechanical theory of transport processes. IV. the equations of hydrodynamics, J. Chem. Phys., 18, 817-829, (1950) · doi:10.1063/1.1747782
[15] Blenk, S.; Muschik, W., Orientational balances for nematic liquid crystals, J. Non-Equilib. Thermodyn., 16, 67-87, (1991) · Zbl 0722.76007 · doi:10.1515/jnet.1991.16.1.67
[16] Ehrentraut, H.; Muschik, W.; Papenfuss, C., Mesoscopically derived orientation dynamics of liquid crystals, J. Non-Equilib. Thermodyn., 22, 285-298, (1997) · Zbl 0903.76008 · doi:10.1515/jnet.1997.22.3.285
[17] Maugin, G.A.; Muschik, W., Thermodynamics with internal variables. part I. general concepts, J. Non-Equilib. Thermodyn., 19, 217-249, (1994) · Zbl 0808.73006
[18] Maugin, G.A.; Muschik, W., Thermodynamics with internal variables. part II. applications, J. Non-Equilib. Thermodyn., 19, 250-289, (1994) · Zbl 0808.73006
[19] Coleman, B.D.; Gurtin, M.E., Thermodynamics with internal state variables, J. Chem. Phys., 47, 597-613, (1967) · doi:10.1063/1.1711937
[20] Müller, I.; Weiss, W., Thermodynamics of irreversible processes—past and present, Eur. Phys. J. H, 37, 139-236, (2012) · doi:10.1140/epjh/e2012-20029-1
[21] Ván, P., Berezovski, A., Engelbrecht, J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235-254 (2008) · Zbl 1158.80001
[22] Ván, P.: Weakly nonlocal continuum theories of granular media: restrictions from the Second Law. Int. J. Solids Struct. 41(21), 5921-5927 (2004) · Zbl 1059.74020
[23] Ván, P., Fülöp, T.: Weakly nonlocal fluid mechanics—the Schrödinger equation. Proc. R. Soc. Lond. A, 462(2066), 541-557 (2006) · Zbl 1263.80010
[24] Cimmelli, V.A., An extension of Liu procedure in weakly nonlocal thermodynamics, J. Math. Phys., 48, 113510, (2007) · Zbl 1152.81377 · doi:10.1063/1.2804753
[25] Berezovski, A.; Engelbrecht, J.; Maugin, G.A., Generalized thermomechanics with dual internal variables, Arch. Appl. Mech., 81, 229-240, (2011) · Zbl 1271.74014 · doi:10.1007/s00419-010-0412-0
[26] Matolcsi, T., Ván, P.: Can material time derivative be objective? Phys. Lett. A, 353, 109-112 (2006) · Zbl 1423.74720
[27] Ván, P.: Exploiting the Second Law in weakly nonlocal continuum physics. Period. Polytech. Ser. Mech. Eng. 49(1), 79-94 (2005)
[28] Ván, P.: Weakly nonlocal non-equilibrium thermodynamics - variational principles and Second Law. In: Quak, E., Soomere T. (eds.) Applied Wave Mathematics (Selected Topics in Solids, Fluids, and Mathematical Methods), Chapter III, pp. 153-186. Springer, Berlin (2009) · Zbl 1191.74004
[29] Onsager, L., Reciprocal relations of irreversible processes I, Phys. Rev., 37, 405-426, (1931) · JFM 57.1168.10 · doi:10.1103/PhysRev.37.405
[30] Onsager, L., Reciprocal relations of irreversible processes II, Phys. Rev., 38, 2265-2279, (1931) · Zbl 0004.18303 · doi:10.1103/PhysRev.38.2265
[31] Casimir, H.G.B., On onsager’s principle of microscopic reversibility, Rev. Mod. Phys., 17, 343-350, (1945) · doi:10.1103/RevModPhys.17.343
[32] Cimmelli, V.A.; Ván, P., The effects of nonlocality on the evolution of higher order fluxes in non-equilibrium thermodynamics, J. Math. Phys., 46, 112901-112915, (2005) · Zbl 1111.80001 · doi:10.1063/1.2101087
[33] Ciancio, V.; Cimmelli, V.A.; Ván, P., On the evolution of higher order fluxes in non-equilibrium thermodynamics, Math. Comput. Model., 45, 126-136, (2007) · Zbl 1136.80001 · doi:10.1016/j.mcm.2006.04.009
[34] Ván, P.; Fülöp, T., Universality in heat conduction theory: weakly nonlocal thermodynamics, Ann. Phys., 524, 470-478, (2012) · Zbl 1263.80010 · doi:10.1002/andp.201200042
[35] Landau, L.D., Ginzburg, V.L.: K teorii sverkhrovodimosti. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki. 20, 1064 (1950). English translation: On the theory of superconductivity, In: ter Haar, D. (ed.) Collected papers of L. D. Landau, pp. 546-568. Pergamon, Oxford (1965)
[36] Landau, L.D., Khalatnikov, I.M.: Ob anomal’nom pogloshchenii zvuka vblizi tochek fazovogo perekhoda vtorogo roda, Dokladu Akademii Nauk SSSR. 96, 469-472 (1954). In: ter Haar, D. (ed.) Collected papers of L.D. Landau, pp. 626-633. Pergamon, Oxford (1965)
[37] Grmela, M., Weakly nonlocal hydrodynamics, Phys. Rev. E, 47, 351-602, (1993) · doi:10.1103/PhysRevE.47.351
[38] Grmela, M.; Öttinger, H.C., Dynamics and thermodynamics of complex fluids. I. development of a general formalism, Phys. Rev. E, 56, 6620-6632, (1997) · doi:10.1103/PhysRevE.56.6620
[39] Fabrizio, M., An evolution model for the Ginzburg-Landau equations, Riv. Mat. Univ. Parma, 2, 155-169, (1999) · Zbl 0954.35151
[40] Fabrizio, M.; Lazzari, B.; Morro, A., Thermodynamics of nonlocal electromagnetism and superconductivity, Math. Mod. Methods Appl. Sci., 13, 945-969, (2003) · Zbl 1053.82037 · doi:10.1142/S0218202503002787
[41] de Gennes P.G.: The Physics of Liquid Crystals, 2nd edn. Oxford University Press, New York (1993) · Zbl 0787.73054
[42] Fülöp T.: Thermodynamics of rheology: the standard model (under publication)
[43] Verhás J.: Thermodynamics and Rheology. Akadémiai Kiadó and Kluwer Academic Publisher, Budapest (1997) · Zbl 0878.73001
[44] Ferry J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)
[45] Tschoegl N.W.: The phenomenological theory of linear viscoelastic behavior: an introduction. Springer, Berlin (1989) · Zbl 0681.73022 · doi:10.1007/978-3-642-73602-5
[46] Klatt, D.; Hamhaber, U.; Asbach, P.; Braun, J.; Sackl, I., Noninvasive assessment of the rheological behavior of human organs using multifrequency mr elastography: a study of brain and liver viscoelasticity, Phys. Med. Biol., 52, 7281-7294, (2007) · doi:10.1088/0031-9155/52/24/006
[47] Haan, Y.M.; Sluimer, G.M., Standard linear solid model for dynamic and time dependent behaviour of building materials, Heron, 46, 49-76, (2001)
[48] Matsuki, K.; Takeuchi, K., Three-dimensional in situ stress determination by anelastic strain recovery of a rock core, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30, 1019-1022, (1993) · doi:10.1016/0148-9062(93)90064-K
[49] Matsuki, K., Anelastic strain recovery compliance of rocks and its application to in situ stress measurement, Int. J. Rock Mech. Min. Sci., 45, 952-965, (2008) · doi:10.1016/j.ijrmms.2007.10.005
[50] Lin, W., et al.: A case study of 3d stress orientation determination in Shikoku island and Kii peninsula, Japan. In: Vrkljan, I. (ed.) Rock Engineering in Difficult Ground Conditions (Soft Rock and Karst), pp. 277-282, London (2010). Balkema. Proceedings of Eurock’09 Cavtat, Croatia, X. 28-29 (2009) · Zbl 0938.70013
[51] Forest, S.; Sievert, R., Nonlinear microstrain theories, Int. J. Solids Struct., 43, 7224-7245, (2006) · Zbl 1102.74003 · doi:10.1016/j.ijsolstr.2006.05.012
[52] Joseph, D.D.; Preziosi, L., Heat waves, Rev. Mod. Phys., 61, 41-73, (1989) · Zbl 1129.80300 · doi:10.1103/RevModPhys.61.41
[53] Fülöp, T.; Ván, P., Kinematic quantities of finite elastic and plastic deformations, Math. Methods Appl. Sci., 35, 1825-1841, (2012) · Zbl 1397.74008 · doi:10.1002/mma.2558
[54] Noll, W.; Seguin, B., Basic concepts of thermomechanics, J. Elast., 101, 121-151, (2010) · Zbl 1294.80002 · doi:10.1007/s10659-010-9253-x
[55] Ván, P.; Papenfuss, C., Thermodynamic consistency of third grade finite strain elasticity, Proc. Estonian Acad. Sci., 59, 126-132, (2010) · Zbl 1375.74005 · doi:10.3176/proc.2010.2.10
[56] Fabrizio, M.; Morro, A., Thermodynamics and second sound in a two-fluid model of helium II; revisited, J. Non-Equilib. Thermody., 28, 69-84, (2003) · Zbl 1125.82329 · doi:10.1515/JNETDY.2003.004
[57] McFadden, G.B.; Anderson, D.M.; Wheeler, A.A., Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30, 139-165, (1998) · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[58] Goddard, J.D., A note on eringen’s moment balances, Int. J. Eng. Sci., 49, 1486-1493, (2011) · Zbl 1423.74720 · doi:10.1016/j.ijengsci.2011.03.013
[59] Gurtin M.E., Fried E., Anand L.: The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge (2010) · doi:10.1017/CBO9780511762956
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.