×

On cohomogeneity one biharmonic hypersurfaces into the Euclidean space. (English) Zbl 1341.53010

Summary: The aim of this paper is to prove that there exists no cohomogeneity one \(G\)-invariant proper biharmonic hypersurface in the Euclidean space \(\mathbb R^n\), where \(G\) denotes a transformation group which acts on \(\mathbb{R}^n\) by isometries, with codimension two principal orbits. This result may be considered in the context of the Chen conjecture, since this family of hypersurfaces includes examples with up to seven distinct principal curvatures. The paper uses the methods of equivariant differential geometry. In particular, the technique of proof provides a unified treatment for all these \(G\)-actions.

MSC:

53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
58E20 Harmonic maps, etc.

References:

[1] Chen, B.-Y., Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17, 169-188 (1991) · Zbl 0749.53037
[2] Eells, J.; Lemaire, L., (Selected Topics in Harmonic Maps. Selected Topics in Harmonic Maps, CBMS Regional Conference Series in Mathematics, vol. 50 (1983), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0515.58011
[3] Jiang, G. Y., 2-harmonic maps and their first and second variation formulas, Chinese Ann. Math. Ser. A, 7, 7, 130-144 (1986) · Zbl 0596.53046
[4] Balmuş, A.; Montaldo, S.; Oniciuc, C., Biharmonic PNMC submanifolds in spheres, Ark. Mat., 51, 197-221 (2013) · Zbl 1282.53047
[5] Chen, B.-Y., (Total Mean Curvature and Submanifolds of Finite Type. Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, vol. 1 (1984), World Scientific Publishing Co.: World Scientific Publishing Co. Singapore) · Zbl 0537.53049
[6] Loubeau, E.; Montaldo, S., Biminimal immersions, Proc. Edinb. Math. Soc., 51, 421-437 (2008) · Zbl 1144.58010
[7] Ou, Y.-L., Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math., 248, 217-232 (2010) · Zbl 1205.53066
[8] Oniciuc, C., Biharmonic maps between Riemannian manifolds, An. Stiint. Univ. Al.I. Cuza Iasi Mat (N.S.), 48, 237-248 (2002) · Zbl 1061.58015
[9] Myers, S.; Steenrod, N., The group of isometries of a Riemannian manifold, Ann. of Math., 40, 400-416 (1939) · JFM 65.1415.03
[10] Hsiang, W.-Y.; Lawson, B., Minimal submanifolds of low cohomogeneity, J. Differential Geom., 5, 1-38 (1971) · Zbl 0219.53045
[11] Bombieri, E.; De Giorgi, E.; Giusti, E., Minimal cones and the Bernstein problem, Invent. Math., 7, 243-268 (1969) · Zbl 0183.25901
[12] Eells, J.; Ratto, A., (Harmonic maps and minimal immersions with symmetries. Harmonic maps and minimal immersions with symmetries, Ann. Math. Studies, vol. 133 (1993), Princeton University Press), 1-228 · Zbl 0783.58003
[13] Hsiang, W.-Y., Generalized rotational hypersurfaces of constant mean curvature in the Euclidean space I, J. Differential Geom., 17, 337-356 (1982) · Zbl 0493.53043
[14] Chen, B.-Y., Recent developments of biharmonic conjecture and modified biharmonic conjectures, (Pure and Applied Differential Geometry - PADGE 2012 (2013), Shaker Verlag: Shaker Verlag Aachen), 81-90 · Zbl 1300.53013
[15] Chen, B.-Y., (Total Mean Curvature and Submanifolds of Finite Type. Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, vol. 27 (2015), World Scientific) · Zbl 1326.53004
[16] Dimitric, I., Submanifolds of \(E^m\) with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sin., 20, 53-65 (1992) · Zbl 0778.53046
[17] Defever, F., Hypersurfaces of \(E^4\) with harmonic mean curvature vector, Math. Nachr., 196, 61-69 (1998) · Zbl 0944.53005
[18] Hasanis, Th.; Vlachos, Th., Hypersurfaces in \(E^4\) with harmonic curvature vector field, Math. Nachr., 172, 145-169 (1995) · Zbl 0839.53007
[19] Fu, Y., Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space, Tohoku Math. J., 67, 465-479 (2015) · Zbl 1333.53078
[20] Montaldo, S.; Oniciuc, C.; Ratto, A., Proper biconservative immersions into the Euclidean space, Ann. Mat. Pura Appl., 195, 403-422 (2016) · Zbl 1357.58022
[21] Akutagawa, K.; Maeta, S., Biharmonic properly immersed submanifolds in Euclidean spaces, Geom. Dedicata, 164, 351-355 (2013) · Zbl 1268.53068
[22] Nakauchi, N.; Urakawa, H.; Gudmundsson, S., Biharmonic maps into a Riemannian manifold of non-positive curvature, Geom. Dedicata, 169, 263-272 (2014) · Zbl 1316.58012
[23] Back, A.; do Carmo, M. P.; Hsiang, W.-Y., On some fundamental equations of equivariant Riemannian geometry, Tamkang J. Math., 40, 343-376 (2009) · Zbl 1205.53033
[24] Pedrosa, R. H.L., Riemannian transformation groups, (In Lectures on isometric actions, XV Esc. Geom. Diferencial (2008), Inst. Mat. Pura Apl. (IMPA): Inst. Mat. Pura Apl. (IMPA) Rio de Janeiro), 5-75 · Zbl 1180.53001
[25] Münzner, H.-F., Isoparametrische Hyperflächen in Sphären, Math. Ann., 251, 57-71 (1980) · Zbl 0417.53030
[26] Thorbergsson, G., A survey on isoparametric hypersurfaces and their generalizations, (Dillen, F.; Verstraelen, L., Handbook of Differential Geometry, vol. I (2000), Elsevier Science: Elsevier Science Amsterdam), 963-995 · Zbl 0979.53002
[27] Eells, J.; Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86, 109-160 (1964) · Zbl 0122.40102
[28] Fu, Y., Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean 5-space, J. Geom. Phys., 75, 113-119 (2014) · Zbl 1283.53005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.