×

Two-dimensional centered wave flow patches to the Guderley Mach reflection configurations for steady flows in gas dynamics. (English) Zbl 1339.35225

Summary: In an attempt to resolve the von Neumann triple point paradox in shock reflection phenomenon, a new type of reflection configuration, called Guderley Mach reflection, was observed both in numerical simulations and physical experiments recently. In this type of reflection configuration, there exists a sequence of triple points, with a centered expansion fan and a supersonic patch at each triple point. In this paper, we present a mathematical analysis of the centered wave flow patches of Guderley Mach reflection. In order to construct such a flow patch, a centered wave problem is introduced. The existence of a global classical solution to the centered wave problem for the two-dimensional isentropic irrotational steady Euler equations is established.

MSC:

35Q31 Euler equations
76L05 Shock waves and blast waves in fluid mechanics
Full Text: DOI

References:

[1] 1. S. Bang, Interaction of three and four rarefaction waves of the pressure-gradient system, J. Differential Equations246 (2009) 453-481. genRefLink(16, ’S0219891616500028BIB001’, ’10.1016
[2] 2. G. Ben-Dor, Shock Wave Reflection Phenomena (Springer Verlag, New York, 2007). · Zbl 1146.76001
[3] 3. S. X. Chen and A. F. Qu, Interaction of rarefaction waves in jet stream, J. Differential Equations248 (2010) 2931-2954. genRefLink(16, ’S0219891616500028BIB003’, ’10.1016
[4] 4. X. Chen and Y. X. Zheng, The interaction of rarefaction waves of the two-dimensional Euler equations, Indiana Univ. Math. J.59 (2010) 231-256. genRefLink(16, ’S0219891616500028BIB004’, ’10.1512 · Zbl 1203.35167
[5] 5. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves (Interscience, New York, 1948). · Zbl 0041.11302
[6] 6. Z. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics, Arch. Ration. Mech. Anal.155 (2000) 277-298. genRefLink(16, ’S0219891616500028BIB006’, ’10.1007
[7] 7. K. G. Guderley, Considerations on the structure of mixed subsonic supersonic flow patterns, Air Material Command Tech. Report F-TR-2168-ND, ATI 22780, GS-AAF-Wright Field 39, U.S. Wright-Patterson Air Force Base, Dayton, OH (1947).
[8] 8. P. Hartman and A. Wintner, On hyperbolic partial differential equations, Amer. J. Math.74 (1952) 834-864. genRefLink(16, ’S0219891616500028BIB008’, ’10.2307 · Zbl 0048.33302
[9] 9. J. K. Hunter and M. Brio, Weak shock reflection, J. Fluid Mech.410 (2000) 235-261. genRefLink(16, ’S0219891616500028BIB009’, ’10.1017
[10] 10. G. Lai and W. C. Sheng, Nonexistence of the Von Neumann reflection configuration for the triple point paradox, SIAM J. Appl. Math.71 (2011) 2072-2092. genRefLink(16, ’S0219891616500028BIB010’, ’10.1137 · Zbl 1242.35189
[11] 11. G. Lai and W. C. Sheng, Centered wave bubbles with sonic boundary of pseudosteady Guderley Mach reflection configurations in gas dynamics, J. Math. Pures Appl.104 (2015) 179-206. genRefLink(16, ’S0219891616500028BIB011’, ’10.1016 · Zbl 1326.35201
[12] 12. G. Lai, W. C. Sheng and Y. X. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions, Discrete Contin. Dyn. Syst.31 (2011) 489-523. genRefLink(16, ’S0219891616500028BIB012’, ’10.3934 · Zbl 1222.35121
[13] 13. T. T. Li, Global Classical Solutions for Quasilinear Hyperbolic System (John Wiley, 1994).
[14] 14. J. Q. Li, On the two-dimensional gas expansion for the compressible Euler equations, SIAM J. Appl. Math.62 (2002) 831-852. genRefLink(16, ’S0219891616500028BIB014’, ’10.1137
[15] 15. J. Q. Li, Z. C. Yang and Y. X. Zheng, Characteristic decompositions and interactions of rarefaction waves of 2D Euler equations, J. Differential Equations250 (2011) 782-798. genRefLink(16, ’S0219891616500028BIB015’, ’10.1016
[16] 16. T. T. Li and W. C. Yu, Boundary Value Problem for Quasilinear Hyperbolic Systems (Duke University, 1985).
[17] 17. J. Q. Li, T. Zhang and Y. X. Zheng, Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations, Comm. Math. Phys.267 (2006) 1-12. genRefLink(16, ’S0219891616500028BIB017’, ’10.1007
[18] 18. J. Q. Li and Y. X. Zheng, Interaction of rarefaction waves of the two-dimensional self-similar Euler equations, Arch. Ration. Mech. Anal.193 (2009) 623-657. genRefLink(16, ’S0219891616500028BIB018’, ’10.1007
[19] 19. J. Q. Li and Y. X. Zheng, Interaction of four rarefaction waves in the bi-symmetric class of the two-dimensional euler equations, Comm. Math. Phys.296 (2010) 303-321. genRefLink(16, ’S0219891616500028BIB019’, ’10.1007
[20] 20. M. J. Li and Y. X. Zheng, Semi-hyperbolic patches of solutions of the two-dimensional Euler equations, Arch. Ration. Mech. Anal.201 (2011) 1069-1096. genRefLink(16, ’S0219891616500028BIB020’, ’10.1007
[21] 21. E. Mach, \.Uber den verlauf von funkenwellenin der ebene und im raume, Sitzungsber. Akad. Wiss. Wien.78 (1878) 819-838.
[22] 22. B. W. Skews and J. T. Ashworth, The physical nature of weak shock wave reflection, J. Fluid Mech.542 (2005) 105-114. genRefLink(16, ’S0219891616500028BIB022’, ’10.1017
[23] 23. B. W. Skews, G. Li and R. Paton, Experiments on Guderley Mach reflection, Shock Waves19 (2009) 95-102. genRefLink(16, ’S0219891616500028BIB023’, ’10.1007
[24] 24. K. Song and Y. X. Zheng, Semi-Hyperbolic patches of solutions of the pressure gradient system, Discrete Contin. Dyn. Syst.24 (2009) 1365-1380. genRefLink(16, ’S0219891616500028BIB024’, ’10.3934
[25] 25. A. M. Tesdall and J. K. Hunter, Self-similar solutions for weak shock reflection, SIAM J. Appl. Math.63 (2002) 42-61. genRefLink(16, ’S0219891616500028BIB025’, ’10.1137
[26] 26. A. M. Tesdall, R. Sanders and B. L. Keyfitz, The triple point paradox for the nonlinear wave system, SIAM J. Appl. Math.67 (2006) 321-336. genRefLink(16, ’S0219891616500028BIB026’, ’10.1137 · Zbl 1116.65106
[27] 27. A. M. Tesdall, R. Sanders and B. L. Keyfitz, Self-similar solutions for the triple point paradox in gas dynamics, SIAM J. Appl. Math.68 (2008) 1360-1377. genRefLink(16, ’S0219891616500028BIB027’, ’10.1137 · Zbl 1147.76036
[28] 28. E. Vasil’ev and A. Kraiko, Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions, Comput. Math. Phys.39 (1999) 1335-1345.
[29] 29. J. von Neumann, Oblique reflection of shock, Bureau of Ordnance, Explosives Research Report, 12, Navy Department, Bureau of Ordnance, (1943).
[30] 30. A. Zakharian, M. Brio, J. K. Hunter and G. Webb, The von Neumann paradox in weak shock reflection, J. Fluid Mech.422 (2000) 193-205. genRefLink(16, ’S0219891616500028BIB030’, ’10.1017 · Zbl 0995.76042
[31] 31. Y. X. Zheng, The compressible Euler system in two space dimensions, in Nonlinear Conservation Laws: Fluid Systems and Related Topics, eds. G.-Q. Chen, T.-T. Li and C. Liu, Series in Countempertary Applied Mathematics (World Scientific Publisher, Beijing, 2009). [Abstract]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.