×

Finite-time distributed cooperative attitude tracking control for multiple rigid spacecraft. (English) Zbl 1338.70031

Summary: We investigate the finite-time cooperative attitude synchronization and tracking control for multiple rigid spacecrafts with a time-varying leader, whose attitude is represented by modified rodriguez parameters. In particular, the studied systems are composed of one dynamic leader with bounded unknown acceleration inputs and some followers with bounded disturbances. A novel nonlinear tracking control protocol is constructed via nonsingular terminal sliding mode scheme. It is shown that the proposed protocol can effectively drive the states of the followers to track the leader within the finite-time. Finally, an example is illustrated to verify the proposed protocol.

MSC:

70Q05 Control of mechanical systems
93A14 Decentralized systems
94A13 Detection theory in information and communication theory
Full Text: DOI

References:

[1] Wen, J. T.; Kreutz-Delgado, K., The attitude control problem, IEEE Trans. Autom. Control, 36, 10, 1148-1162 (1991) · Zbl 0758.93053
[2] Hughes, P. C., Spacecraft Attitude Dynamics (2012), Courier Dover Publications: Courier Dover Publications U.K
[3] Ahmed, J.; Coppola, V. T.; Bernstein, D. S., Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification, J. Guidance Control Dyn., 21, 5, 684-691 (1998)
[4] Sidi, M. J., Spacecraft Dynamics and Control (1997), Cambridge University Press: Cambridge University Press Cambridge, U.K
[5] Ren, W., Distributed attitude alignment in spacecraft formation flying, Int. J. Adapt. Control Signal Process., 21, 95-113 (2007) · Zbl 1115.93338
[6] Cao, Y.; Yu, W.; Ren, W.; Chen, G., An overview of recent progress in the study of distributed multi-agent coordination, IEEE Trans. Indust. Inf., 9, 1, 427-438 (2013)
[7] Yu, W.; Ren, W.; Zheng, W.; Chen, G.; Lü, J., Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics, Automatica, 49, 7, 2107-2115 (2013) · Zbl 1364.93039
[8] Ren, W.; Beard, R.; Ttkins, E., Information consensus in multivehicle cooperative control, IEEE Control Syst. Mag., 27, 2, 71-82 (2007)
[9] Fax, J.; Murray, R., Information flow and cooperative control of vehicle formations, IEEE Trans. Autom. Control, 49, 9, 1465-1476 (2004) · Zbl 1365.90056
[10] Joshi, S. M.; Kelkar, A. G.; Wen, J. T., Robust attitude stabilization of spacecraft using nonlinear quaternion feedback, IEEE Trans. Autom. Control, 40, 10, 1800-1803 (1995) · Zbl 0841.93059
[11] Tsiotras, P., Stabilization and optimality results for the attitude control problem, SIAM J. Control Dyn., 19, 4, 772-779 (1996) · Zbl 0854.93104
[12] Dimarogonas, D. V.; Tsiotras, P.; Kyriakopoulos, K. J., Leader-follower cooperative attitude control of multiple rigid bodies, Syst. Control Lett., 58, 429-435 (2009) · Zbl 1161.93002
[13] Xia, Y.; Zhu, Z.; Fu, M.; Wang, S., Attitude tracking of rigid spacecraft with bounded disturbances, IEEE Trans. Ind. Electr., 58, 2, 647-659 (2011)
[14] Ren, W., Distributed cooperative attitude synchronization and tracking for multiple rigid bodies, IEEE Trans. Control Syst. Tech., 18, 2, 383-392 (2010)
[15] VanDyake, M.; Hall, C., Decentralized coordinated attitude control of a formation of spacecraft, J. Guidance Control Dyn., 29, 5, 1101-1109 (2006)
[16] Wong, H.; de Queiroz, M. S.; Kapila, V., Adaptive tracking control using synthesized velocity from attitude measurements, Automatica, 37, 6, 947-953 (2010) · Zbl 0997.93076
[17] Meng, Z.; Ren, W.; You, Z., Decentralised cooperative attitude tracking using modified rodriguez parameters based on relative attitude information, IEEE Trans. Control Syst. Tech., 18, 2, 383-392 (2010) · Zbl 1205.93009
[18] Lovera, M.; Astolfi, A., Global magnetic attitude control for spacecraft in the presence of gravity gradient, IEEE Trans. Aerosp. Electr. Syst., 42, 3, 796-805 (2006)
[19] Park, Y., Robust and optimal attitude stabilization of spacecraft with external disturbances, Aerosp. Sci. Tech., 9, 3, 253-259 (2005) · Zbl 1195.70052
[20] Zhao, Y.; Duan, Z.; Wen, G., Distributed finite-time of Euler-Lagrange systems without velocity measurements, Int. J. Robust Nonlinear Control (2014)
[21] Yu, S.; Yu, X.; Shirinzadeh, B. J.; Man, Z., Continuous finite-time control for robotic manipulators with terminal sliding mode, IEEE Trans. Autom. Control, 11, 41, 1957-1964 (2005) · Zbl 1125.93423
[22] Chen, G.; Yue, Y.; Song, Y., Finite-time cooperative-tracking control for networked Euler-Lagrange systems, IET Control Theory Appl., 7, 11, 1487-1497 (2013)
[23] Khoo, S.; Xie, L.; Man, Z., Robust finite-time consensus tracking algorithm for multirobot systems, IEEE Trans. Mechatron., 14, 2, 219-228 (2009)
[24] Du, H.; Li, S.; Qian, C., Finite-time attitude tracking control of spacecraft with application to attitude synchronization, IEEE Trans. Autom. Control, 56, 11, 2711-2717 (2011) · Zbl 1368.70036
[25] Meng, Z.; Ren, W.; You, Z., Distributed finite-time attitude containment control for multiple rigid bodies, Automatica, 46, 2092-2099 (2010) · Zbl 1205.93010
[26] Du, H.; Li, S., Finite-time cooperative attitude control of multiple spacecraft using terminal sliding mode control technique, Int. J. Modell. Ident. Control, 16, 4, 327-333 (2012)
[27] Hu, J.; Hong, Y., Leader-following coordination of multi-agent systems with coupling time delays, Phys. A. Stat. Mech. Appl., 374, 2, 853-863 (2007)
[28] Slotine, J.-J. E.; Benedetto, M. D., Hamiltonian adaptive control of spacecraft, IEEE Trans. Autom. Control, 35, 7, 848-852 (1990) · Zbl 0709.93588
[29] Bhat, S. P.; Bernstein, D. S., Finite-time stability of homogeneous systems, Proc. Am. Control Conf., 4, 2513-2514 (1997)
[30] Hardy, G.; Littlewood, J.; Polya, G., Inequalities (1952), Cambridge University Press: Cambridge University Press Cambridge, U.K · Zbl 0047.05302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.