×

New block quadrature rules for the approximation of matrix functions. (English) Zbl 1338.65122

Summary: Golub and Meurant have shown how to use the symmetric block Lanczos algorithm to compute block Gauss quadrature rules for the approximation of certain matrix functions. We describe new block quadrature rules that can be computed by the symmetric or nonsymmetric block Lanczos algorithms and yield higher accuracy than standard block Gauss rules after the same number of steps of the symmetric or nonsymmetric block Lanczos algorithms. The new rules are block generalizations of the generalized averaged Gauss rules introduced by Spalević. Applications to network analysis are presented.

MSC:

65F60 Numerical computation of matrix exponential and similar matrix functions
65D32 Numerical quadrature and cubature formulas
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C82 Small world graphs, complex networks (graph-theoretic aspects)
Full Text: DOI

References:

[1] Alsayed, A.; Higham, D. J., Betweenness in time dependent networks, Chaos Solitons Fractals, 72, 35-48 (2015) · Zbl 1352.90020
[2] Baglama, J.; Fenu, C.; Reichel, L.; Rodriguez, G., Analysis of directed networks via partial singular value decomposition and Gauss quadrature, Linear Algebra Appl., 456, 93-121 (2014) · Zbl 1295.05216
[3] Bai, Z.; Day, D.; Ye, Q., ABLE: an adaptive block Lanczos method for non-Hermitian eigenvalue problems, SIAM J. Matrix Anal. Appl., 20, 1060-1082 (1999) · Zbl 0932.65045
[4] Benzi, M.; Boito, P., Quadrature rule-based bounds for functions of adjacency matrices, Linear Algebra Appl., 433, 637-652 (2010) · Zbl 1191.65046
[5] Benzi, M.; Estrada, E.; Klymko, C., Ranking hubs and authorities using matrix functions, Linear Algebra Appl., 438, 2447-2474 (2013) · Zbl 1258.05067
[6] Benzi, M.; Klymko, C., Total communicability as a centrality measure, J. Complex Netw., 1, 1-26 (2013)
[7] Brezinski, C.; Fika, P.; Mitrouli, M., Estimations of the trace of powers of self-adjoint operators by extrapolation of the moments, Electron. Trans. Numer. Anal., 39, 144-159 (2012) · Zbl 1287.65042
[8] Calvetti, D.; Golub, G. H.; Reichel, L., An adaptive Chebyshev iterative method for nonsymmetric linear systems based on modified moments, Numer. Math., 67, 21-40 (1994) · Zbl 0796.65033
[9] Calvetti, D.; Reichel, L., Application of a block modified Chebyshev algorithm to the iterative solution of symmetric linear systems with multiple right hand side vectors, Numer. Math., 68, 3-16 (1994) · Zbl 0808.65024
[10] Croft, J. J.; Estrada, E.; Higham, D. J.; Taylor, A., Mapping directed networks, Electron. Trans. Numer. Anal., 37, 337-350 (2010) · Zbl 1205.65166
[11] Duran, A. J.; Lopez-Rodriguez, P., Orthogonal matrix polynomials: zeros and Blumenthal’s theorem, J. Approx. Theory, 84, 96-118 (1996) · Zbl 0861.42016
[12] Estrada, E., The Structure of Complex Networks (2012), Oxford University Press: Oxford University Press Oxford · Zbl 1267.05001
[13] Estrada, E.; Hatano, N.; Benzi, M., The physics of communicability in complex networks, Phys. Rep., 514, 89-119 (2012)
[14] Estrada, E.; Higham, D. J., Network properties revealed through matrix functions, SIAM Rev., 52, 696-714 (2010) · Zbl 1214.05077
[15] Estrada, E.; Rodríguez-Velázquez, J. A., Subgraph centrality in complex networks, Phys. Rev. E, 71, 056103 (2005)
[16] Fenu, C.; Martin, D.; Reichel, L.; Rodriguez, G., Network analysis via partial spectral factorization and Gauss quadrature, SIAM J. Sci. Comput., 35, A2046-A2068 (2013) · Zbl 1362.65052
[17] Fenu, C.; Martin, D.; Reichel, L.; Rodriguez, G., Block Gauss and anti-Gauss quadrature with application to networks, SIAM J. Matrix Anal. Appl., 34, 1655-1684 (2013) · Zbl 1425.65063
[18] Fika, P.; Mitrouli, M.; Roupa, P., Estimates for the bilinear form \(x^T A^{- 1} y\) with applications to linear algebra problems, Electron. Trans. Numer. Anal., 43, 70-89 (2014) · Zbl 1302.65100
[19] Gallivan, K.; Heath, M.; Ng, E.; Peyton, B.; Plemmons, R.; Ortega, J.; Romine, C.; Sameh, A.; Voigt, R., Parallel Algorithms for Matrix Computations (1990), SIAM: SIAM Philadelphia · Zbl 0711.00021
[20] Golub, G. H.; Meurant, G., Matrices, moments and quadrature, (Griffiths, D. F.; Watson, G. A., Numerical Analysis 1993 (1994), Longman: Longman Essex, England), 105-156 · Zbl 0795.65019
[21] Golub, G. H.; Meurant, G., Matrices, Moments and Quadrature with Applications (2010), Princeton University Press: Princeton University Press Princeton · Zbl 1217.65056
[22] Golub, G. H.; Van Loan, C. F., Matrix Computations (2013), Johns Hopkins University Press: Johns Hopkins University Press Baltimore · Zbl 1268.65037
[23] Grindrod, P.; Higham, D. J., A matrix iteration for dynamic network summaries, SIAM Rev., 55, 118-128 (2013) · Zbl 1262.91121
[24] Higham, N. J., Functions of Matrices: Theory and Computation (2008), SIAM: SIAM Philadelphia · Zbl 1167.15001
[25] Higham, N. J., The scaling and squaring method for the matrix exponential revisited, SIAM Rev., 51, 747-764 (2009) · Zbl 1178.65040
[26] Laurie, D. P., Anti-Gaussian quadrature formulas, Math. Comp., 65, 739-747 (1996) · Zbl 0843.41020
[27] Newman, M. E.J., Networks: An Introduction (2010), Oxford University Press: Oxford University Press Oxford · Zbl 1195.94003
[29] Sinap, A.; Van Assche, W., Polynomial interpolation and Gaussian quadrature for matrix-valued functions, Linear Algebra Appl., 207, 71-114 (1994) · Zbl 0810.41028
[30] Spalević, M. M., On generalized averaged Gaussian formulas, Math. Comp., 76, 1483-1492 (2007) · Zbl 1113.65025
[31] Spalević, M. M., A note on generalized averaged Gaussian formulas, Numer. Algorithms, 46, 253-264 (2007) · Zbl 1131.65029
[32] The University of Florida Sparse Matrix Collection
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.