×

Quasi-Feynman formulas – a method of obtaining the evolution operator for the Schrödinger equation. (English) Zbl 1337.81053

Summary: For a densely defined self-adjoint operator \(\mathcal{H}\) in Hilbert space \(\mathcal{F}\) the operator \(\exp (- i t \mathcal{H})\) is the evolution operator for the Schrödinger equation \(i \psi_t^\prime = \mathcal{H} \psi\), i.e. if \(\psi(0, x) = \psi_0(x)\) then \(\psi(t, x) = (\exp (- i t \mathcal{H}) \psi_0)(x)\) for \(x \in Q\). The space \(\mathcal{F}\) here is the space of wave functions \(\psi\) defined on an abstract space \(Q\), the configuration space of a quantum system, and \(\mathcal{H}\) is the Hamiltonian of the system. In this paper the operator \(\exp (- i t \mathcal{H})\) for all real values of \(t\) is expressed in terms of the family of self-adjoint bounded operators \(S(t)\), \(t \geq 0\), which is Chernoff-tangent to the operator \(- \mathcal{H}\). One can take \(S(t) = \exp (- t \mathcal{H})\), or use other, simple families \(S\) that are listed in the paper. The main theorem is proven on the level of semigroups of bounded operators in \(\mathcal{F}\) so it can be used in a wider context due to its generality. Two examples of application are provided.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
47D08 Schrödinger and Feynman-Kac semigroups
35C15 Integral representations of solutions to PDEs
35J10 Schrödinger operator, Schrödinger equation
35K05 Heat equation

References:

[1] Aharonov, Y.; Colombo, F.; Sabadini, I.; Struppa, D. C.; Tollaksen, J., On the Cauchy problem for the Schrödinger equation with superoscillatory initial data, J. Math. Pures Appl., 99, 2, 165-173 (February 2013) · Zbl 1258.35172
[2] Beloshapka, V.; Kalinin, A.; Kuznetsov, M.; Mayorov, K.; Polotovskiy, G.; Remizov, I.; Sennikovskiy, Ya.; Shabat, G.; Tokman, M.; Tumanov, A.; Zhislin, G., Alexander Abrosimov, Notices Amer. Math. Soc., 59, 11, 1569-1570 (December 2012) · Zbl 1284.01049
[3] Bogachev, V. I.; Smolyanov, O. G., Real and Functional Analysis: University Course (2009), RCD: RCD Moscow, Izhevsk, (in Russian)
[4] Botelho, L. C.L., Semi-linear diffusion in \(R^D\) and Hilbert spaces, a Feynman-Wiener path integral study, Random Oper. Stoch. Equ., 19, 4 (2011) · Zbl 1302.35421
[5] Botelho, L. C.L., Non linear diffusion and wave damped propagation: weak solutions and statistical turbulence behavior, J. Adv. Math. Appl., 3, 1-11 (2014)
[6] Böttcher, B.; Butko, Ya. A.; Schilling, R. L.; Smolyanov, O. G., Feynman formulae and path integrals for some evolutionary semigroups related to tau-quantization, Russ. J. Math. Phys., 18, 4, 387-399 (2011) · Zbl 1311.58006
[7] Butko, Ya. A., Feynman formulas and functional integrals for diffusion with drift in a domain on a manifold, Math. Notes, 83, 3-4, 301-316 (April 2008) · Zbl 1155.58302
[8] Butko, Ya. A., Feynman formulae for evolution semigroups, Electron. Sci. Tech. Period. Sci. Educ., 3, 95-132 (2014), (in Russian)
[9] Butko, Ya. A.; Grothaus, M.; Smolyanov, O. G., Lagrangian Feynman formulas for second-order parabolic equations in bounded and unbounded domains, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13, 3, 377-392 (2010) · Zbl 1204.47096
[10] Butko, Ya. A.; Schilling, R. L.; Smolyanov, O. G., Lagrangian and Hamiltonian Feynman formulae for some Feller semigroups and their perturbations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15, 3 (2012), 26 pp · Zbl 1213.47047
[12] Buzinov, M. S.; Butko, Ya. A., Feynman formulae for a parabolic equation with biharmonic differential operator on a configuration space, Electron. Sci. Tech. Period. Sci. Educ., 8, 135-154 (2012), (in Russian)
[13] Chernoff, Paul R., Note on product formulas for operator semigroups, J. Funct. Anal., 2, 238-242 (1968) · Zbl 0157.21501
[14] Cordero, E.; Nicola, F., Some new Strichartz estimates for the Schrödinger equation, J. Differential Equations, 245, 7, 1945-1974 (2008) · Zbl 1154.35081
[15] Cordero, E.; Nicola, F.; Rodino, L., Gabor representations of evolution operators, Trans. Amer. Math. Soc., 367, 7639-7663 (2015) · Zbl 1338.35519
[16] Daletsky, Yu. L.; Fomin, S. V., Measures and Differential Equations in Infinite-Dimensional Space (1991), Kluwer · Zbl 0753.46027
[17] Dubravina, V. A., Feynman formulas for solutions of evolution equations on ramified surfaces, Russ. J. Math. Phys., 21, 2, 285-288 (April 2014) · Zbl 1327.47036
[18] Engel, K.-J.; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations (2000), Springer · Zbl 0952.47036
[19] Feynman, R. P., Space-time approach to nonrelativistic quantum mechanics, Rev. Modern Phys., 20, 367-387 (1948) · Zbl 1371.81126
[20] Feynman, R. P., An operation calculus having applications in quantum electrodynamics, Phys. Rev., 84, 108-128 (1951) · Zbl 0044.23304
[22] Hassell, A.; Wunsch, J., The Schrödinger propagator for scattering metrics, Ann. of Math., 162, 1, 487-523 (July 2005) · Zbl 1126.58016
[23] Ito, K.; Nakamura, S., Remarks on the fundamental solution to Schrödinger equation with variable coefficients, Ann. Inst. Fourier, 62, 3, 1091-1121 (2012) · Zbl 1251.35102
[24] Kuo, H.-S., Gaussian Measures in Banach Space, Lecture Notes in Math., vol. 463 (1975), Springer-Verlag · Zbl 0306.28010
[25] Mazucchi, S., Functional-integral solution for the Schrödinger equation with polynomial potential: a white noise approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14, 675 (2011) · Zbl 1232.35140
[26] Nakamura, S., Wave front set for solutions to Schrödinger equations, J. Funct. Anal., 256, 1299-1309 (2009) · Zbl 1155.35014
[27] Nelson, E., Feynman integrals and the Schrödinger equation, J. Math. Phys., 5, 3, 332 (1964) · Zbl 0133.22905
[28] Ord, G. N., The Schrödinger and diffusion propagators coexisting on a lattice, J. Phys. A: Math. Gen., 29, 5 (1996) · Zbl 0914.39015
[29] Orlov, Yu. N.; Sakbaev, V. Zh.; Smolyanov, O. G., Feynman formulas as a method of averaging random Hamiltonians, Proc. Steklov Inst. Math., 285, 1, 222-232 (August 2014) · Zbl 1304.81082
[30] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag · Zbl 0516.47023
[31] Plyashechnik, A. S., Feynman formula for Schrödinger-type equations with time- and space-dependent coefficients, Russ. J. Math. Phys., 19, 3, 340-359 (2012) · Zbl 1260.81082
[32] Plyashechnik, A. S., Feynman formulas for second-order parabolic equations with variable coefficients, Russ. J. Math. Phys., 20, 3, 377-379 (2013) · Zbl 1285.81030
[33] Remizov, I. D., Solution of a Cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula, Russ. J. Math. Phys., 19, 3, 360-372 (2012) · Zbl 1258.35203
[35] Remizov, I. D., Solution to a parabolic differential equation in Hilbert space via Feynman formula - parts I and II, the latest version of · Zbl 1258.35203
[36] Smolyanov, O. G., Feynman formulae for evolutionary equations, (Trends in Stochastic Analysis. Trends in Stochastic Analysis, London Math. Soc. Lecture Note Ser., vol. 353 (2009)) · Zbl 1173.58006
[37] Smolyanov, O. G., Schrödinger type semigroups via Feynman formulae and all that, (Proceedings of the Quantum Bio-Informatics V. Proceedings of the Quantum Bio-Informatics V, Tokyo University of Science, Japan, 7-12 March 2011 (2013), World Scientific) · Zbl 1354.47030
[38] Smolyanov, O. G.; Tokarev, A. G.; Truman, A., Hamiltonian Feynman path integrals via the Chernoff formula, J. Math. Phys., 43, 10, 5161-5171 (2002) · Zbl 1060.58009
[39] Smolyanov, O. G.; v. Weizsäcker, H.; Wittich, O., Chernoff’s theorem and discrete time approximations of Brownian motion on manifolds, Potential Anal., 26, 1, 1-29 (February 2007) · Zbl 1107.58014
[40] Stone, M. H., On one-parameter unitary groups in Hilbert space, Ann. of Math., 33, 3, 643-648 (1932) · Zbl 0005.16403
[41] Weihrauch, K.; Zhong, N., Is the linear Schrödinger propagator Turing computable?, (Computability and Complexity in Analysis. Computability and Complexity in Analysis, Lecture Notes in Comput. Sci., vol. 2064 (2001)), 369-377 · Zbl 0985.03058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.