×

Existence and permanence in a diffusive KiSS model with robust numerical simulations. (English) Zbl 1337.65133

Summary: We have given an extension to the study of Kierstead, Slobodkin, and Skellam (KiSS) model. We present the theoretical results based on the survival and permanence of the species. To guarantee the long-term existence and permanence, the patch size denoted as \(L\) must be greater than the critical patch size \(L_c\). It was also observed that the reaction-diffusion problem can be split into two parts: the linear and nonlinear terms. Hence, the use of two classical methods in space and time is permitted. We use spectral method in the area of mathematical community to remove the stiffness associated with the linear or diffusive terms. The resulting system is advanced with a modified exponential time-differencing method whose formulation was based on the fourth-order Runge-Kutta scheme. With high-order method, this extends the one-dimensional work and presents experiments for two-dimensional problem. The complexity of the dynamical model is discussed theoretically and graphically simulated to demonstrate and compare the behavior of the time-dependent density function.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
92D25 Population dynamics (general)
35K57 Reaction-diffusion equations
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations

Software:

Matlab

References:

[1] Kierstead, H.; Slobodkin, L. B., The size of water masses containing plankton looms, Journal of Marine Research, 12, 141-147 (1953)
[2] Skellam, J. G., Random dispersal in theoretical populations, Biometrika, 38, 196-218 (1951) · Zbl 0043.14401 · doi:10.1093/biomet/38.1-2.196
[3] Okubo, A., Horizontal dispersion and critical scales for phytoplankton patches, Spatial Pattern in Plankton Communities. Spatial Pattern in Plankton Communities, NATO Conference Series, 3, 21-42 (1978), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/978-1-4899-2195-6_2
[4] Méndez, V.; Fedotov, S.; Horsthemke, W., Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities (2010), Berlin, Germany: Springer, Berlin, Germany
[5] Murray, J. D., Mathematical Biology I: An Introduction (2002), New York, NY, USA: Springer, New York, NY, USA · Zbl 1006.92001
[6] Ishige, K.; Yagisita, H., Blow-up problems for a semilinear heat equations with large diffusion, Journal of Differential Equations, 212, 114-128 (2005) · Zbl 1072.35096
[7] Lacey, A. A., Diffusion models with blow-up, Journal of Computational and Applied Mathematics, 97, 1-2, 39-49 (1998) · Zbl 0926.35054 · doi:10.1016/s0377-0427(98)00105-8
[8] Małolepszy, T.; Okrasiñski, W., Blow-up time for solutions to some nonlinear Volterra integral equations, Journal of Mathematical Analysis and Applications, 366, 1, 372-384 (2010) · Zbl 1188.45003 · doi:10.1016/j.jmaa.2010.01.030
[9] Owolabi, K. M., Robust numerical solution of the time-dependent problems with blow-up, International Journal of Bioinformatics and Biomedical Engineering, 1, 2, 53-63 (2015)
[10] Weissler, F. B., Single point blow-up for a semilinear initial value problem, Journal of Differential Equations, 55, 2, 204-224 (1984) · Zbl 0555.35061 · doi:10.1016/0022-0396(84)90081-0
[11] Fornberg, B., A Practical Guide to Pseudospectral Methods (1998), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0844.65084 · doi:10.1017/cbo9780511626357
[12] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), New York, NY, USA: Dover, New York, NY, USA · Zbl 0994.65128
[13] Trefethen, L. N., Spectral Methods in MATLAB (2000), Philadelphia, Pa, USA: SIAM, Philadelphia, Pa, USA · Zbl 0953.68643
[14] Weideman, J. A. C.; Reddy, S. C., A MATLAB differenciation suite, Transactions on Mathematical Software, 26, 4, 465-519 (2001) · doi:10.1145/365723.365727
[15] Fornberg, B.; Driscoll, T. A., A fast spectral algorithm for nonlinear wave equations with linear dispersion, Journal of Computational Physics, 155, 2, 456-467 (1999) · Zbl 0937.65109 · doi:10.1006/jcph.1999.6351
[16] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, Journal of Computational Physics, 176, 2, 430-455 (2002) · Zbl 1005.65069 · doi:10.1006/jcph.2002.6995
[17] Du, Q.; Zhu, W., Analysis and applications of the exponential time differencing schemes and their contour integration modifications, BIT Numerical Mathematics, 45, 2, 307-328 (2005) · Zbl 1080.65074 · doi:10.1007/s10543-005-7141-8
[18] Kassam, A.-K.; Trefethen, L. N., Fourth-order time-stepping for stiff PDEs, SIAM Journal on Scientific Computing, 26, 4, 1214-1233 (2005) · Zbl 1077.65105 · doi:10.1137/s1064827502410633
[19] Owolabi, K. M.; Patidar, K. C., Higher-order time-stepping methods for time-dependent reaction-diffusion equations arising in biology, Applied Mathematics and Computation, 240, 30-50 (2014) · Zbl 1334.65136 · doi:10.1016/j.amc.2014.04.055
[20] Krogstad, S., Generalized integrating factor methods for stiff PDEs, Journal of Computational Physics, 203, 1, 72-88 (2005) · Zbl 1063.65097 · doi:10.1016/j.jcp.2004.08.006
[21] Munthe-Kaas, H., High order Runge-Kutta methods on manifolds, Applied Numerical Mathematics, 29, 115-127 (1999) · Zbl 0934.65077
[22] Owolabi, K. M.; Patidar, K. C., Numerical solution of singular patterns in one-dimensional Gray-Scott-like models, International Journal of Nonlinear Sciences and Numerical Simulation, 15, 7-8, 437-462 (2014) · Zbl 1401.65101 · doi:10.1515/ijnsns-2013-0124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.