×

The generalized Lipman-Zariski problem. (English) Zbl 1333.14006

The Lipman-Zariski conjecture asserts that a complex variety with a locally free tangent sheaf is smooth and has been proved for several special cases. In the article under review, the author proposes and studies a generalized version of the Lipman-Zariski conjecture. Let \((x\in X)\) be an \(n\)-dimensional complex singularity and let \(\Omega_X^{[p]}\) denote the reflexive hull of the sheaf \(\Omega_X^p\) of differential \(p\)-forms. Then the problem is whether the freeness of \(\Omega_X^{[p]}\) implies the smoothness of \((x\in X)\) for some \(p\). The author gives an example of negative answer with \(p=2\) for terminal singularities of dimension three and four, and proves that if \(p=n-1\), there are only finitely many log canonical counterexamples in each dimension, and all of these are isolated and terminal. Applying this result the author also shows that if \(X\) is a projective klt variety such that \(\Omega^p\) on its smooth locus is flat, then \(X\) is a quotient of an abelian variety. On the other hand, an affirmative answer for any \(1\leq p \leq n-1\) is obtained if \((x\in X)\) is a hypersurface singularity with singular locus of codimension at least three. The proof is based on the study of the torsion and cotorsion of the sheaves \(\Omega_X^p\) on a hypersurface in terms of a Koszul complex. As a corollary, the author obtains that for a normal hypersurface singularity, the torsion in degree \(p\) is isomorphic to the cotorsion in degree \(p-1\) via the residue map.

MSC:

14B05 Singularities in algebraic geometry
14J17 Singularities of surfaces or higher-dimensional varieties
14E30 Minimal model program (Mori theory, extremal rays)
32S05 Local complex singularities
32S25 Complex surface and hypersurface singularities
13A50 Actions of groups on commutative rings; invariant theory
13N05 Modules of differentials

References:

[1] Bănică, C., Stănăşilă, O.: Algebraic Methods in the Global Theory of Complex Spaces. Wiley, New York (1976) · Zbl 0334.32001
[2] Druel, S.: The Zariski-Lipman conjecture for log canonical spaces. Bull. Lond. Math. Soc. 46(4), 827-835 (2014) · Zbl 1357.14009 · doi:10.1112/blms/bdu040
[3] Eisenbud, D.: Commutative Algebra with a View towards Algebraic Geometry, Graduate Texts in Mathematics, vol. 150. Springer, New York (1995) · Zbl 0819.13001
[4] Flenner, H.: Extendability of differential forms on nonisolated singularities. Invent. Math. 94(2), 317-326 (1988) · Zbl 0658.14009 · doi:10.1007/BF01394328
[5] Graf, P.: Bogomolov-Sommese vanishing on log canonical pairs, J. Reine Angew. Math. 0 (2013), 1-34, published electronically in May 2013. To appear in print. Preprint arXiv:1210.0421v2 [math.AG] · Zbl 1344.14023
[6] Graf, P., Kovács, S.J.: An optimal extension theorem for \[11\]-forms and the Lipman-Zariski conjecture. Doc. Math. 19, 815-830 (2014) · Zbl 1310.14008
[7] Graf, P., Kovács, S.J.: Potentially Du Bois spaces. J. Singul. Preprint arXiv:1401.4976 [math.AG], January 2014 · Zbl 1323.14002
[8] Grauert, H., Kerner, H.: Deformationen von Singularitäten komplexer Räume. Math. Ann. 153, 236-260 (1964) · Zbl 0118.30401 · doi:10.1007/BF01360319
[9] Grauert, H., Remmert, R.: Analytische Stellenalgebren, Die Grundlehren der mathematischen Wissenschaften, vol. 176. Springer, Berlin (1971) · Zbl 0231.32001
[10] Grauert, H., Remmert, R.: Coherent Analytic Sheaves, Die Grundlehren der mathematischen Wissenschaften, vol. 265. Springer, Berlin (1984) · Zbl 0537.32001
[11] Greb, D., Kebekus, S., Kovács, S.J., Peternell, T.: Differential forms on log canonical spaces. Publications Mathématiques de L’IHÉS 114, 1-83 (2011) · Zbl 1285.14053 · doi:10.1007/s10240-011-0035-1
[12] Greb, D., Kebekus, S., Peternell, T.: Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of Abelian varieties. arXiv:1307.5718v2 [math.AG], version 2, May 2014 · Zbl 1360.14094
[13] Greb, D., Rollenske, S.: Torsion and cotorsion in the sheaf of Kähler differentials on some mild singularities. Math. Res. Lett. 18(6), 1259-1269 (2011) · Zbl 1285.14020 · doi:10.4310/MRL.2011.v18.n6.a14
[14] Greuel, G.-M.: Dualität in der lokalen Kohomologie isolierter Singularitäten. Math. Ann. 250(2), 157-173 (1980) · Zbl 0417.14003 · doi:10.1007/BF01364456
[15] Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York (1977) · Zbl 0367.14001 · doi:10.1007/978-1-4757-3849-0
[16] Jörder, C. : A weak version of the Lipman-Zariski conjecture. arXiv:1311.5141 [math.AG], November 2013 · Zbl 1327.32016
[17] Källström, R.: The Zariski-Lipman conjecture for complete intersections. J. Algebra 337, 169-180 (2011). 2796069 (2012d:14001) · Zbl 1250.14003 · doi:10.1016/j.jalgebra.2011.05.003
[18] Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998) · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[19] Lipman, J.: Free derivation modules on algebraic varieties. Am. J. Math. 87(4), 874-898 (1965) · Zbl 0146.17301 · doi:10.2307/2373252
[20] Lu, S.S.-Y., Taji, B.: A characterization of finite quotients of abelian varieties. arXiv:1410.0063 [math.AG], September 2014 · Zbl 1423.14255
[21] Reid, M.: Young person’s guide to canonical singularities. Proc. Sym. Pure Math. Algebraic Geom. Bowdoin 46, 345-416 (1985) · Zbl 0634.14003
[22] Reid, M.: Chapters on Algebraic Surfaces, Complex Algebraic Geometry. IAS/Park City Mathematics Series. AMS, Providence (1997) · Zbl 0910.14016
[23] Steenbrink, J.H.M.: Mixed Hodge structure on the vanishing cohomology, Real and complex singularities. In: Proceedings Ninth Nordic Summer School, NAVF Sympos. Math., Oslo, Sijthoff and Noordhoff. Alphen aan den Rijn 1977, 525-563 (1976) · Zbl 1357.14009
[24] Vetter, U.: Äußere Potenzen von Differentialmoduln reduzierter vollständiger Durchschnitte. Manuscr. Math. 2, 67-75 (1970) · Zbl 0194.06903 · doi:10.1007/BF01168480
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.